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Abstract. Based on the solution to the Rarita—Schwinger equations, a direct derivation of the projection
operator and propagator for a particle with arbitrary spin is worked out. The projection operator con-
structed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral
spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived,
and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided.

1 Introduction

In order to perform analyses for high energy processes such
as

b1(1235) — w+m, Pp(PPy) — fo(1270) + T,
a3(2050) — f2(1270) + 7, H — WTW~,
J/U — a3(1320) + p,

and so on, it is necessary to employ higher spin relativistic
wave functions, projection operators and Feynman prop-
agators [1-4]. Recently, a systematical method [5] was de-
veloped to solve the Rarita—Schwinger [6] equations and
derive explicit positive and negative energy wave functions
for higher spin particles. Based on this work, we have car-
ried out a further investigation on the projection operator,
the commutation rules and the Feynman propagator for a
free particle with arbitrary spin. The results are reported
in the present paper.

The concept of higher spin projection operators was
first introduced by Behrends and Fronsdal [7,8] in 1957
when they undertook a calculation of the lifetimes and
spectra of Fermi decays for higher spin particles. Based
on the properties of these operators derived from the
Klein—Gordon and Rarita—Schwinger equations, they con-
structed an explicit form of the projection operators for
particles with arbitrary integral or half-integral spins. This
construction was carried out first in the rest system and
then generalized to an arbitrary frame. In 1965, Zemach
[9] proposed an alternative way to construct this kind of
projection operators in the rest frame. However, it has
been found recently by Chung [1,2] and by Filippini et al.
[4] that the Zemach formalism is incorrect because it is es-
sentially a non-relativistic one. Considering that the B-F

formulas are basically constructed in the rest frame, an in-
dependent check of their correctness might be necessary.
A direct calculation of these projection operators based
on the explicit expressions of the wave functions and per-
formed in an arbitrary frame should yield a reliable check.
The first part of the present work will be devoted to this
check. The results show that the B-F formulas are correct.
It is found that the projection operators for half-integral
spins should be derived in a way different compared with
that for integral spins, because Dirac v matrices are in-
volved in this case. They are derived by virtue of a set
of newly found sum relations about v matrices and spins
1/2 and 1 wave functions, and are simplified such that it
is suitable for calculation of the Feynman propagators.

The propagator for a free particle of arbitrary spin
j was first studied by Weinberg [10] in 1964; the treat-
ment is based on a 2j 4+ 1-component field ¢, (z)(m =
j,j—1,---,—j) constructed from the 2j + 1-dimensional
unitary representation of the boost operation. The prop-
agator is defined as the vacuum expectation value of
time-ordered field component operators, Sr(i?n, (x—y) =
(T{pm (), (y)})o. It is emphasized by Weinberg in this
work that for particles with spin j > 1, there appear
extra non-covariant terms in the propagator (called the
“raw” propagator), and that the cure to this problem
would be to add non-covariant “contact” terms to the
Hamiltonian in such a way as to cancel out these non-
covariant terms, so that the “true” propagator used in
the Feynman rules contains only the covariant part. In
1968, Scadron [11] calculated the high-spin propagator in
a different formalism. The wave functions used in this cal-
culation are tensors or tensor-spinors that are constructed
by Auvil and Brehm [9] and are re-derived in our pre-
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vious work [5]. In the Scadron approach, however, it is
the contracted propagator (numerator) that was stud-
ied, which is defined as a contraction of the spin sum,
Do ebpz ke (K eiv2 Ve (K) with the initial momenta
p“ip¥2 ... p”» and the final momenta p#1p#2...p'Hn . In
1992, based on the work of Weinberg [10], Ahluwalia
and Ernst [12] suggested that the high-spin propagators
can be constructed as that of spin 1/2. Their definition
of the propagator (different from that of Weinberg) is
SO (z —y) = (T{¥Y) ()@ (y)})o, the vacuum expec-
tation value of time-ordered field operators ¥9) (), which
are the spin sums of the field components, ¥\ (z) =
> Wm(z). However, no explicit expressions for the prop-
agators were derived since the spin sum of the spinors
is not worked out. In the second part of this paper, we
shall choose the field operators W) () as the solutions
to the Rarita—Schwinger equations [5,6] to calculate the
propagators defined as the vacuum expectation value of
time-ordered field operators. We shall work out the co-
variant part of the Feynman propagator as well as the ex-
tra non-covariant terms for a particle with arbitrary spin.
Although only the covariant part will be used in the Feyn-
man rules, the non-covariant terms might serve as guides
to the construction of the Hamiltonian as pointed out by
Weinberg [10]. It is found that there is a new kind of extra
non-covariant terms originating from the v factors in the
expression of the propagator for a half-integral spin, be-
sides that for an integral spin. These terms will be derived
in a step-by-step way. Especially, explicit expressions for
the propagators for spins 3/2, 2, 5/2, 3, 7/2 and 4, which
are often useful for experimentalists, are worked out in de-
tail. Our formulas for the propagators are different from
those derived by Weinberg [10] because the definitions are
different and the field operators are also different, while
by contracting our propagators with the initial and final
momenta, a contracted propagator consistent with that
derived by Scadron [11] could be produced because we
used the same spin sums of tensors or tensor-spinors that
satisfy the Rarita—Schwinger equations. Such an equiva-
lence, however, will not be discussed in the present work.

2 The projection operator
2.1 Integral spin

For a particle with arbitrary integral spin n and rest-mass
W, the wave functions could be expressed as

AV1iv2evn (37) — Z
p

o) (p)e v,

> i [am(ples - (p)ee
2EV

m=—n

(1a)
where E = p2 + W2, p = (p’ IE), eviva - n (p) and
gv1v2¥n (p) are, respectively, the positive and negative en-

ergy wave functions in the momentum representations and
satisfy the wave equation

(p? + W?2)Avvzvn (p) = (), (1b)
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and the subsidiary conditions

AV1D2“'V1',"‘V,7'“'V7L(p) = Ay1y2m1/j~~u7r-'l/n(p), (1C)
e ) 0 (o
AyVVs"'Vn (p) — 07 (16)

here A¥1¥2¥n(p) stands for e”*¥2" "~ (p) or e**2""'»(p).
The solution to (1b)—(1e) has been carried out previously
and the results can be written as [5]

e (p)

(2a)
1
= Z (n—1,m—X,, 1, A\ n=1,1,n,m)
An=—1

vive - Vn—1
m—>Ap

e ()

=Z

_V1V9VUp 1
Cm—X
m—An

xe (p)ex: (p),

(n—=1,m—X,,1,\, In=1,1,n,m)
An
X (p)ex: (p),

where e (p) and eX(p) are the positive and negative en-
ergy wave functions for spin 1 and are related by

ég\i (p) = Gu;u; (el,\h (p))* = (_1))\iey_i)\i (P),

i

Guips = diag {17 L1, _1} : (2¢)

The wave functions e”1*2" "~ (p) and e”**2""¥~(p) are nor-
malized according to

(2d)

en (P (P) = Do

As in the case of spin 1, the projection operator for spin
n is defined as

n
Ptz ( p)= el (p)gt  (p).

m=—n
(3)
From (1b)—(le) and the normalization condition (2d), it
is easy to find that the projection operator possesses the
following properties [7,8]:

el U1V UiV U
P2 a1V i ' n(n’p)

= PHBz BnVIV2 Vi Vi Un () (4a)
Py PHIH2 V2 U (g )y — () (4b)
PHip2 fn VYV Un (n7p> = 07 (4C)

PHUE2 RV Vn (g ) PYAV2 T VRS1€2 S ()
= PHab2 T Engie2 S (g ) (4d)
By using the explicit expressions for e*1*2"'¥»(p) and

e’z Vn(p) and the projection operator for spin 1 given
by

1 1
pri(p) = > ek(p)est(p) = Y e (p)eX (p)
A=— A=—
= G + Ppa Py (5)

w2’
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one can perform a direct calculation of the projection op-
erator for a given integral spin. For example, in the case of
spin 2, by utilizing the explicit form of the positive energy
wave functions listed below:

1
vive __ V1 V2 v __ vy V2 vy V2
€2 T = €p16y, € T = \/5[6+160 e el
1
e = e e + 2eq'eg® + eZyel?],
V6
1
ely? = [eg' e +eZyeg?], el =elhel,

V2

and the corresponding negative energy wave functions
et1iz (which can be listed by replacing e§ with € in the

above expressions), and noticing that e§ = (—1)*e”,, a
straightforward calculation leads to
2
Pﬂlltzulllz(z’p) — E éﬁbnlﬂ'ze;;lfz
m=—2
1 SH1 V1 SH2 V2 1 SH1 V2 SH2 V1
:5 g ey ey E e/\,ek,+§ E €y €y g €y €y
A N A Y

1
Y Y e
A A
1 11Vl DR2V2 1 H1V2 D2Vl 1 H1p2 DV1V2

or alternatively, by using Ptivi = PYiti,

PHrip2v1Y2 (2, p) (Gb)
1 1
= Z PV (p)Pr2v2(p) — gpmuz (p) P12 (p)] ,
P(p1p2)
P(viv2)

where the sum is over all permutations of the p’s and v’s.
Similarly, in the case of spin 3, by utilizing the following
explicit form of the positive energy wave functions:

eg! " = el elf el
ey = \/g[eiflefleg?’ +eegield +egtelf el ],
ey = \}[eillefleyal +eeel +elelfely
15 B a -
+2eeg’eq® + 2eq el eg® + 2eg e’ el ],
ep " = el eg’e? + egtelf el + el e e
V10
+2e'eg?eq® + e el e’
+egreZely +elegteld ],
enyRs = \/ﬁ[%gl eg2e’?
+2e5 € eg® + 2 e eq® + el e e
+et el el? 4 e e el ],
P = e + e e e
VeV — M V2 o3
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and the corresponding negative energy wave functions, one
finds by direct calculation

3
PHiH2p3vib2V3 (37 p) — E eHIM213 o112V
m m

m=—3

= 1 [Pl»tlvlpﬂzl/zp#sl/g + PHv1L pHavs prsvz
6

-I-Pl“yz Puzul P/,Lgll?, + PM1U2 PH2V3 PusVl
+ PH1V3 pH2vi pR3V2 +P#1V3PH2V2PM3V1]

_i [PNlePWVzPM;aVB + PHiK3 pYiv2 plavs
15

+P/t2u3 Ppviv2 privs + PH1k2 pY1V3 DH3V2
+PH1M3PV1V3PM2V2 + PH2i3 pY1V3 DH1V2
+PH1M2PV2V3PM3V1 _|_PH1M3PV2V3PM2V1

_|_PM2M3 pravs PMlVl] , (7&)
or alternatively,
PHriH2p3IV2V3 (37])) (7b)

_ i Z PpH1VL phava P“3V3—§P’u1“2 Privz prsvs |
36 E

P(u1pzp3)
P(vivavs)

This method could be generalized to the case of spin
4,5, - The expressions given by (6b) and (7b) and so on
are exactly the same as the ones constructed by Behrends
and Fronsdal [7,8], which can be written, in our notation,

PHLk2 fnV1V2 Uy (n p)
)

(8)

1 2 n n
— (n') Z HP#M‘, +A1P#1#2PV1V2 HPltiVi+_,_

P(p) |i=1 i=3
P

+Arpﬂ1u2pl/1v2pu3#4 prsva .

n
PHer-1)H2r PY(2r-1)Var H Privi ...
i=2r+1
An/2pﬂlu2pull’2 ... PHn—1fn PVn—1Vn
(for even n)
A(n_l)/gpﬂflﬂ2PV1V2, .. PHn—2bn—1 PVn—2Vn—1 PlnVn |’
(for odd n)

(9)
B 1\" n!
- (2> rl(n—2r)!(2n—1)(2n—3) - - - (2n—2r+1)°

Thus the B-F projection operator for integral spin is con-
firmed.
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2.2 Half-integral spin

For a particle with arbitrary half-integral spin n+ 1/2 (n
is an integral), the wave function may be expressed by [5]

n+1/2

Ly Y

P m=—(n+1/2)

WVIVZ'“ x

U )V (p)e e,

where U*172¥n (p) and V12"V (p) are, respectively, the
positive and negative energy wave functions in momentum
representations and take the following form:

U (p \W;Him:ﬁ uy ()
e )
m:wﬁgﬁﬁaﬁ%@w
Vn;il‘ﬁi” Jo_, (p),

with w,(p) and v.(p)(r = £1/2) the usual Dirac 1/2
spinors. The adjoint field of W2~ (z) is as in the case
of spin 1/2 defined by

(11a)

N‘H

VVIVQ"'Vn(
m

@UIVQ'”VH (x) —

gl

(@ () g

Uzq Vo Up (p)efipa:

O,V (p)e (12)
where
%% n + + m —l/ 12 I/,L
e p) = 1| " M ) () (130
T =M, -
1 Cmis (P-4 (P);
o n + +m
VVIVZ"'Vn V1V2 Vn 1 b
m = T2t e )y () (130)
n + 2 1/11/2 un
Tong 1 Cmth o3 (P);
u'r‘ 74; UT (p)’y4 (130)

These wave functions are normalized according to
Uviva:vn (p)UV1V2"'Vn (p)
m m/’

= —(W/E)Spr = Vi (p) Vo> (p), (142
T (p) Vs (p)

a2

[am (P)U " (p)e"

(10)
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= Ve v (p) Uyt (p) = 0.

In a similar fashion as in the case of spin 1/2, the projec-
tion operator for spin n + 1/2 is defined by

(14D)

Pmuz"'unlﬁl’z'”vn (p)

_ Z Utpz- un UV1V2 (p)’ (15&)
m

Pmuz HnV1V2:Vn (p)

_ Z | va (p) (15b)

Armed with the explicit expressions for U}'¥2"» and
Vyiva¥n and the projection operators for spin 1 [see (5)]
and 1/2 given by

1/2 .
_ p+iWw
A=Y wmune =20
r=—1/2
1/2 .
_ p»—iW
A_ = = 1
}#w@MW) s

together with the following newly found sum relations con-
cerning y matrices and spin 1/2 and spin 1 wave functions:

1 v
@757v6+1u_% = u%,

1 _ ~
_i\iﬁu—%ﬂ)/ue.t,_f}% =uy, (17&)

v _
Twelur = 0,

ﬂ%’y é—i—l = 07

spequr =uL,  —Iyyequ_1 =u_1,
—iaiy.e0v; = uy, 17]_%7,,66’}/5 =u_y, (17Db)
1 v
—ﬁ'yg,’y,,eflu% =u_1, Wwelju_1 = 0,
1 _ _
ﬁu%'yyefﬁg, =u_1, U_1me’; =0, (17¢)
and
Vsldyvs = —A-, e PPAL = ALy, PV,
Yo P75 Aty = Ayyo P7H, (18)

one can perform a direct calculation of the projection op-
erator for an arbitrary half-integral spin. For example, in
the case of spin 3/2, by utilizing the explicit form of the
positive energy wave functions listed below:

Us (p) = ei1(p)uy (p),
Ui(p) = \/geil(p)U;(p) + \/geé‘(p)%(p),

UL, (p) = \/geg(p)U;(P) + \/ge”l(P)U;(P),

UZs (p) = eZy (P)u_y (p),

a straightforward calculation leads to

w()

1
2

3/2

2. Unhp)Up)

m=-—3/2
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= Ay {P“”(p) - ;%%P”“(p)P””(p)} :

Similarly,
3/2
P ( ) > VEDVL(p) (20)
m=—3/2
1
=A_ [P“”(p) - Syo'pr”“(p)P””(p)] .
Combining (19) and (20), we get
P:li:“/ (;,p) = A:I:QMV (2717) 3 (213“)
v (3 uv ! op ov
Q" (52| =P () = 377, P (0) P (p).  (21b)
By using the following relations:
P = P g, PP =3, (210)
’YU’YPPUVPPH =2PH — ’YU’VpPU#Ppyv
one can rewrite Q" (%,p) as
nv 3 2 o ppy
Q{32 ) = 177 (2, ), (21d)

where P7HP¥(2,p) is the projection operator for spin 2.
Similarly, in the case of spin 5/2, a direct calculation re-
sults in

P:lthQVll’z <27p) — AiQulqule (Z’p> ,

Qe (gp) - gmpP””‘W“’z(3,p),

(22)
where PoH1#20Y1V2(3 1) is the projection operator for spin
3. From these results it is possible to write down a general
expression for the spin n + 1/2 projection operator such
as

. 1
Pj:L1H2"'#nl/1l/2" n <TL+ 2’p> (23&)
— AiQﬂllLQ“'anVl’/Z”'Vn (n+ ;7]7) ,
1
QulHQ.uunVll/T“Vn (n + 27p) (23]:))

n+1

| Pri v
Qn + 3%7

“r(n41,p),

where PHH1HEnPV1¥n (n ] ) is the projection operator
for spin n + 1, namely

HnVV1Vn

P
n+1

- 5

m=—(n+1)

(n+1,p)

R () (p). (24)

Feynman propagator for a particle with arbitrary spin
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The expressions given by (23a) and (23b) are consistent
with that constructed by Behrends and Fronsdal [7]. In
what follows, we give a general proof for these expressions.
Considering the positive energy projection operator, it can
be written, using (11a) and (13a), as

P—I"—_LIF‘Q"'N'nVlVQ'“Vn (n + 1/2,13)
n+1/2

m=—(n+1/2)

1 n+1

Z {(n+1+m)e%“2“'“" (p)u

m=—(n+1)
Xy (p)e,” " (p)
(L m) (= el (p)u

U () U3t (p)

(p)

N

2n+1

(p)

1
2

+V
xu_1(p)e, 3" (p)

+ V(4 1+ m)(n —m)ep 3" (p)u_y (p)
xuy(p)en” " (p) (25)

+ (0= m)ehits M (pu_y (p) 1y (P)ELYE " ()]

1
2

(notice ef1k2Hn = () when m > n or m < —n). On the
other hand, we have from (24) and (2)

n+l,
2TL+3 +’YM’YV

PPV

PHHL n(n_|_ 1,]))

n+1

>

m=—(n+1)

n—+1
A
m+3

1
X Z <n’m7>\71 )\|TL 1 ’ﬂ+1 ’ITL> /‘Ll/‘Li lln(p)
LA\=—1

xeh(p)]
1
x Z (n,m=A,1,X|[n,1,n+1,m) e
LA\=—1

x ex(p)]w
— A+’Yu

(2n +3)(2n + 1)

m )

=—(n+1

=1V
Cm— )\

" (p)

D (n +m)
2

14 V1V

pef(p)e, 5" (p)ef (p)

+(n+m+1)\/(n+m)(2_m+1)

ViV V.

(p)ef (p)ers

M2 n
xeh s (

H1p2: " on
m—1

+\/n2

M1H2 Hn (

xe "(p)es (p)

m?)[(n + 1)2 — m?]

124 ViV2:VUn

plef(p)en i " (p)e(p)

+(n+m+1)\/(n+m)(2_m+1)

xepihz e (pleg (p)en s " (p)ef (p)

Xe,,
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[0+ 12 = m¥elt e (p)ef (p)e

+(n_m+1)\/(n—m)(7”;+m+1)

xeltb i ()l (p)esiy " (D)

+ = \/n2 m?)[(n + 1)2 — m?]

xepta i (p)et | (p)eny T (p)ey

+(n_m+1)\/(n—m)(7”;+m+1)

xenti " (p)ely(p)en” M (p)eg (p)
(n—m+1)(n—m)
2
xep 1 (p)el (p)en i (p)er 1 (p)

}7117

" (p)eg(p)

(26)

where the Wigner formula for the Clebsch—Gordan coeffi-

cients has been used. Utilizing

A-ﬁ-’Yuel; (p)

= YueA(P)1sA4475 = Yuek ()75 ( Uity +u_1%u %> V55

2

and (17), it is not difficult to find that the right side of

2

(26) is exactly the same as the right hand side of (25).

Hence
P—I:IHQ'“HW,VIVQ'”VTL (TL + ;,p>
n + 1

— 3A+,Y#PMH1 Hn VU1 Vn (n + 1 p)

Similarly

Pitlliz"'lanle"'Vn <n + ;7p>

n+1
2n+3

— A ’7 PHrEL BV V”('I’L—f—l p)

Therefore, the B-F form of the projection operator
for an arbitrary half-integral spin is proved. In view
of the calculation of the propagator, however, the B-
F form is not the simplest one because it contains
many non-independent terms. Fortunately, this prob-

lem can be solved by the following tricks.

On one

hand, by using the explicit expression for the spin
n + 1 projection operator and (21d), one can rewrite
Qrikzpnviva=va (n 4 L py in a form that contains only

the independent terms, namely, 3PH1"1 PH2¥2 ...

v
Phntn

Yoy p P PPYL PH2V2 PEntn and their permutations among
the tensor indexes (uipia -+ pint1Va -+ Vy). On the other

hand, by using

| Z2 p/tpl/
= +
p2 = _W27
Ay p=+HiWAL,

one can carry out the contraction
Aygy, P7HT PPV PR2v2 Pinvn g0 find that

Apyoryp, P71 PP PH2V2 L Phintn

in terms

(27)

like

Feynman propagator for a particle with arbitrary spin

i 1
= Ax |V Yor F i (Vn Py =Yo1 Py ) + 2P P

W (
X PH2V2 .. phnvn, (28)

After these simplifications, the projection operators can be
expressed in a form that is suitable for the calculation of
the propagators. For example, in the cases of the spins 3/2,
5/2 and 7/2, the projection operators become respectively

prv (;’ p> (29a)

1
= Ai |:6p,1/ -5

3 (YuPv — YoPp)

1
v + —
Yy 3

2
3W2p,up1/ bl

PilllfQVll’Z (271))

= Ai {1 (p#llflpuwz + P#1V2pu2l/1) _ 1P#1#2PV1V2
2 5

1 i
_E Z |:’yu1'7u1 + W (’7;11171/1 - ’Yylp,“)

P(pip2)
P(vyvg)

1
+I/V2p#1p1/1:| PMQVZ} ) (29b)

Pitllmusl/ﬂ/zv:s <;7p>

=A:{ = Z PHIVI plizva pr3vs

P(vivavs)

E PH1H2 pV1V2 DU3VS
P(uipaps)

P(vyvavy)

1 i
_874 Z |:(A/N'1A/V1 + W ('Y/leul - ’Yulpp,l)
P(pip2ps)

P(vyvavs)
1 HaV2 DU3V3
ta PP | PP
2 1
+§ Y1 Yue W (7H1puz - 7u2pu1>

1
+W/2pulp#2> prive prsvs

i
(m T F 3 (Yo Puy = Vs Pr)

cn\r—\

1
+M/v2pmpv1> PH2ps PV2V3] } , (29(})

where P(pps - - ftn) stands for permutations of
(M17M27 e 7[1%)
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3 The Feynman propagator

3.1 Integral spin

We now proceed to derive the Feynman propagator for
an arbitrary integral spin. We begin by working out the
Feynman propagator for spin 2 in a procedure similar to
the one by which the propagator for spin 1 [13] is derived.
3.1.1 Spin 2

The wave functions for spin 2 can be expressed as

3>

P m=—2

j1V1V2
V2EV

< [am(P)ein™ (P)e” + b7, (p)esa ™ (p)e "]

= A7 (@) 4 A @), (30)

where the superscripts (+) and (—) denote creation and
destruction parts respectively, and

i1 ()

_Ze

A1z
en”*(P)

,,,1
- Z e)\l

A1A2

(31a)
1 Al,]. )\2‘1 1 2 m>

(31b)
1 )\la 17)\2‘15 1727m>

and they are normalized according to

ez (p)edi?(p) = 0y,  mym’ =2,1,0,—1,-2. (32)

Utilizing the projection operator given by (6), the field
quantization conditions

[am (P), @ (P1)] = Op.prOmms = [bm(P), b, (D] (33)

with all others vanishing, and the definition of the adjoint
field

Amuz( ) = gvl/tlgvutz (Ai‘«nllbz (p))+

[t ()i (p)e " + b, p)eri (p)e*

Z \/W
:AVlVQ(x)(+)+A”1V2(.’L‘)(_), (34)

a general commutation rule could be derived and can be
expressed as

[Ab2 (@), A2 (af)] = iPHe2 (2) Aw — '), (35)
or equivalently
[ )0, e (@) )]
— jPranavive (Q)A(H(x — '), (36a)

Az (@) ), A2 () O]
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= iprarzive (DA (g — 2f), (36b)
where
Az —a') =iAD (2 — 2') +iAT) (@ —2'), (37a)
1 . ’
s A(H) el = - ip(z—2z)
AT (z —2") Z SEVC ,
(p)
1 ; ,
A (p— ) = — _ = e—ip(z—a)
AT (x—2a") = ZQwVe Pz (37b)
(P)
and
PN1M2V1V2 (2) — 1 Z fDMlVlfDMsz _ lfDMleleW
4 3 ’
P(p)
P()
DLV aﬂal’
PP =4, — 2 (38)

The Feynman propagator for spin 2 is defined in a similar
manner as in the case of spin 1 [13] according to

Ag”mylyz (z — x/) = (0| TAM112 (x)]lml/z (;1;/)|O> (39)

t>t',

(0] A1v2 () Az (2)|0)  t<t.

With the help of (36), it is not difficult to find

A#l#zuwz (SC _ /) (403)
=1i6(t — t’)P”1“2”1”2A (x — ')
—i0(t' — t)Prarevivz A (g — gl
or (setting ' = 0)
AR () (40b)

= if(t) Prirzvive A () — i (—t) Prarevivz A ().

By virtue of

a0(t) = 8(1),  8(t) [AD (@) + A (@)| =0,

51 [ AP (@) + A0 (@)] = 6D (@), (41)

performing a calculation that makes the differential op-

erator PH1#2v172(2) commute past the 6 functions, it is
found that

[0 P A (@) — (=) P AC) ()]

+ ;5/“45%46(4) ($)7

= P Ap(2) + 7

(42a)

and
i[0(t) P PR A (@) — g(—) P prav A (a)|
= Prmvi prava Ap(z) (42b)

i A
+W (5H1V16M245uz4 + 5#146y14pﬂ2y2) 6(4) (33),
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with Ap(z) = i0(t) A (z) — i0(—t) A (z); hence
AR (g — 2') can be rewritten as

ARHR2 (g — ) (43)
= P (9) Ap(z — o) + K22 (2)6W (z — o),

where
Ap(z—1') (44a)
= i0(t—t) AP (z—a) =0t —t) AT (z—2'),
KHpzriva(9) (44b)

i

4W?2
P(p)
P(v)

1

-3 (61/1451/246,“'1“2 + 5M145M24[f’”1u2)} )

[5H1V1 6#245@4 + 5u145,/14p‘u21/2

This is the Feynman propagator for spin 2 in coordinate
representation. Using

Ar(x) = ﬁ / d'pei™* A (p), (45)
Ar(p) = m,

the Fourier representation for AL'¥?"*"2(z) can be easily
deduced

Aglﬂzl/lﬂ (l') = /d4peiprg1N2U1V2 (p)’ (463‘)

(2m)*
Ao p) (461)
—i
— pHip2vivz(9 K k2vive (9
e (2.1),
where
K Hip2v1r2 (2,p)
i LD
= W Z [6N1V16#2461/24—’_6#1461’14]3} 2
P
el
1 12823
_g (51/1451/245#1#2 +5u145u24P )] : (47)

Equation (46b) gives the Feynman propagator for spin 2
in momentum representation. We emphasize here that the
second part on the right hand side of (43) or (46b) rep-
resents the extra non-covariant term that inevitably ap-
pears in the expression of the propagator for spin larger
than 1/2.

3.1.2 Spin 3

The wave functions for spin 3 are
Au1 vavs (x)

eul Vovs (p)eipm

1
= ;W [am(p) m
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+ b (p)eyi”>" (p)e "]
:Al/lugug(x)(*)+AV1V2V3(I)(+),

where
el (p) (492)
= D PR (P)(2 a1 Asl2,1,3,m),
A12A3
em”?" (p) (49b)
= > AP (P2 Mai 1 As[2, 1,3,m),
A12A3
and they are normalized according to
éfﬁyzus (p)e:;/l/zlls (p) — 6m,m’,
m,m’ =3,2,1,0,—-1,—-2, —3. (50)

As in the case of spin 2, by using (7), (33) and the defini-
tion of the adjoint field

i +
AU1V2V3 (SC) = ngHl ngMQ.gVa,us ("Llf‘nl‘uﬂll3 (p))

1
- I;l V2EV

x [af, (p)euiv2"s (p)e ™ 'PT + by, (p)eliV2¥: (p)elP?]
= Amuzug(x)(+) +AV1U2V3(,1;)(7)’ (51)

we find that the general commutation relation takes the
following form:

[ (@), A (o))] = (PR (3) Al — o),

(52)

or equivalently

[A/nuzus (:c)(f), Avivavs (x')(ﬂ]

= ipranapaivays (YA (1 — o), (53a)

[Aﬂlltzus (z)H), Avrvavs (x/)(—>]

= iﬁ“1“2”3”1”2”3(3)A(_)(33 —a'), (53b)
where
}5#1#2#31'1 vavs (3) (54)

1

= — Z ]3#1111 15#21/2}3/1«31/33PM1H2PV11/2PM31/3:| '
36 i

P(pipzps)
P(vivavy)
The Feynman propagator for spin 3 is defined by
ARHRHOIES (¢ — ") = (0] TAM 28 (2) A2 (2)]0)

_ <()| 4#1#2#3 (x)AVleVs (x/)‘0>
<0| Avivavs (:L./)AHIMZHS (x)‘0>

t >t

t<t. (55)

It follows from (53) that

A%1H2H3V1V2V3 (x _ 17/)
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= i0(t — ') Pramersvivavs (YA (1 — o) (56)
_ig(t’ _ t)P#1#2#3V1V2V3 (3)A(7)(.13 _ x’)_
Based on (42a) and (42b), we further find
[i0(t) Prrvs prave provs ACH ()
—i0(—t) P pravs pravs AC) ()| (57)

= pﬂlul puzllzpu?,l/s AF({E)

1 ~ N
+W {(6/‘11/16#2451’24 + 5#1461/14PM2V2) L
+ 6#1”1 6#2112 6#3451/34] 6(4)(37)7

thus the Feynman propagator for spin 3 in coordinate rep-
resentation can be expressed as

Ag1M2M3V1V2V3 (LL'—.’IJ/)
— pranzpsvivavs (3)Ap(z—2)
K Hip2usvivavs (3)5(4) (x —a'),

(58)

where

KH1M2H3V1V2V3 (3)

i R .
- W Z {(6N1V16H246V24 + 6#1461/14PH2V2) prae
P(p)

P(v)
+6M1V1 5#2112 5#3461/34
3 R .
73 [<5l‘1#2‘5u14éuz4 + 5#145#24PV1V2) L
+5mu25u1u2 5AL345V34]} : (59)
The Fourier representation for ARM2#3¥172% (1) is, using
(45), given by
Aglﬂ&ﬂa’/l vav3 (l‘)

1 ipx 12822 %
_ (2n)4 /d4pep Agluzus 1V2 3(?),

Agl H2p3V1V2V3 (p)

(60)

—i
p?+ W2 —ie
+K.U1M2/L3V1V2V3 (3,19),

— PHi1H2p3VIV2VS (3’ p)
(61)
with

K#1M2M3V1V2V3 (3) (62)

- ﬁ Z (5IL1V16M246V24 + 5#145V14P#2V2) prsvs

P(p)

P(v)
+6H1V1 5H2V26M345V34
3 VUV 1%
g (6M1N25V146V24 +5M146H24P ! 2)P#3 ¢

+5H1 w2 6V1 V2 5/13451/34] } .

Equation (61b) gives the Feynman propagator for spin 3
in momentum representation.
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3.1.3 Spin n

The above procedure is now extended to the general case
of an arbitrary integral spin n. We begin by working out
the general commutation rules. From (la), (8) and (33)
and the definition of the adjoint field

Aulyzmun (ZL’)

= GuiprGuips " Quppin (Aum1uz'”un (p))+

1 .
_ + SV1V2 VUp —ipx
= a € €
— 2BV [ m(p) m (p)
e 2 (p)eipx]

x)H) o Arver v () ()] (63)

we get, by following the same steps as in the cases of spin
2 and 3

[AMINZ"‘Nn(x)7AVIVQ"'Vn(x/)}

= prakz eV Ve () A — '), (64)
or
[Amwmun(x)(—)’Avwr“l’n(x')(*')}
= jprarzpnvivas v () A (1 — gy, (65a)
[Amm---un(x)(H’Avwz---vn(z/)(f)}
= iprarzpaive Ve () A (p — 2'), (65b)
where
[ (66)

2 n n
= <7”1Ll> Z Hpﬂz‘Vi + Al(n)ﬁ)#lﬂzfjvlvz HI:)MW
o P(p) | =1 i=3
P(v)
Anso (n)pm/tz prive ... Pln-1bn Pra-ivn
(for even n)
I A(n—11/2(n)p’““2pyly2

... PHn—2pfn—1 PVn72Vn—1pHn’/n

(for odd n)

The Feynman propagator for spin n is defined by

A%1M2"'N7LV1V2'”V1L (LL' _fv/) (67)
= (0] T AFr#2 B () AV1V2 Ve (27)]0)
_ ) O Arpzbin () Avivevn (o) [0) 8 > ¢,
] (0] Avivee v (gl AR (2)]0) <t
and can be rewritten, using (65),
A§1p2~~~unuluz~--un (l’ _ .’El)
= i0(t — ') Prare vz (YA (p — gy (68)
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—if(t' — t)pmuz--~unu1u2-~un (n)A(*)(x —a').

or, as in the cases of spin 2 and 3,
H1fh2 P V1V2 VUn /
A (z —a')

= prakepnvivevn (n)Ap(z — a')

+kulli2"'“n”1”2'”yn (n)5(4)(aﬁ — .%‘/), (69)

where the second term denotes the extra non-covariant
term, which arises when the 6 functions are commuted
past the differential operator Pri#2 #nviv2vn(n) Based
on (42a), (42b) and (57), after a step-by-step calculation,
it is found that

[16(t) Prow prevs ... prnvn AU ()
_19(_t)j3mvl prave .. pﬂnVnA(_)(x)}
— pullll P,uzw .. P“"V"AF<.’E)

i

+W2

[B;L1V1#2V2"'#nl’" 5(4)(.]3), (70)

where

oY%
B = [6H1451/14]7
BHivipzvz — Rl pH2vz 5#1V1 5;@451/247

Bﬂl Vip2V2 33 Bul Vip2av2 pHS V3

+5H1V1 5#21/25#3451/34» R
BM1V1M2V2'“MnVn — BH1V1H2'/2""M7;71V7L71fDNnVn

+5#1V1 5#2112 o

(71)

: 6/"‘71717/71.—1 5#n451}n4‘
Therefore

H1H2 a1V v, (n)

— ! § BH1V1M2V2'”M7LV7L

()2
P(p)
P(v)
+A1(n)BHI,U'2V1V2H3V3H4V4"'Hn’/n (72)
An/2 (n)BlJlﬂzl’lV2"'Hn71unl/n711/n
(for even n)
I R ,
A(n_l)/g(n)BﬂlﬂleVz Hn—2Hn—1Vn—2Vn—1HnVn
(for odd n)

and (69) serves as a general expression for the Feynman
propagator of spin m in coordinate representation. The
Fourier representation for AR #n1¥27 () can be eas-
ily derived, using (45),

AglﬂQ"'HnVIV2"'Vn(x)
~ (2n) / dlpeT AT (n, ), (T3a)
Agl/‘&"'ﬂnl’ll’Z'”Vn(n7p)

—1
— PHiIB2fnViV2Vn n, -
( p)p2 +W?—ie
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+Ku1“2"'ﬂnl’ll’2"'yn(n’p)’ (73b)
where
K“1H2"'N7LV1V2"'V7L (n’ k)
i
= BH1Vip2V2 Hnbn
wE 2
(n ) P(pypz--pin)
P(vive--vn)
+A1 (n)BﬂlﬂzmV2#3V3#4D4“'ann (74)

An/2(n)BHl/I@V1V2"'N7171Mnl’n—1’/n

(for even n)
(n)B/"‘lH2V1V2'“Nn72U/n71Vn—2’/n71un’/n ’

(for odd n)

+. . .+
An—1)/2

with

1%
B = 5/1,1451/147
v vy v v
BHivip2v2 — V1 pi2l2 +5u1u16u245u247
Bivikavapsls . RH1VIH2V2 DH3V3

Jr5#11/1 6#21125#3451/34’ T (75)
BHRIVIR2V2  EnVnfinVn — RBHIVIH2V2 " Hn—1Vn—1 DHEnVn
+(Sltlvl 5H2V2 e 5/471,711/7%15/%45”714'

Equation (73b) gives the general momentum representa-
tion for the Feynman propagator for an arbitrary integral
spin. As an application of these formulas, we give finally
an explicit expression for the Feynman propagator for spin
4 in momentum representation:

L4 V1 V2 V3.
Agwww 1V2V3 4(4,]))
—i
p?+W?2—ie
ViUVaV3 V.
+K#1#2#3#4 1V2V3 4(47]))’

— p#1u2u3u4l’1”21’3”4(47p)
(76)

where

p#1#2N3#4V1V2V3V4 (47p)
2
1
-(3) X
P(pipapspa)
P(vivavavy)
,§PM1H2 PV1V2 Pusl/z Pu4u4
7
+3PH1AL2PV1V2P#3#4PV3V4] ,

|:P'U’1 V1 pH2V2 pH3V3 DHRaVa

35

and

VivaV3V.
K HiH2psfta1V2V3 4(4,}7)

= ! BH1V1p2V2 3V fala
(41w)2 2
P(pipzpspa)
P(vivavary)
6 3

_ _ BH1p2V1V2 3V 4l +7BN1H2V1V2H3M4V3V4
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3.2 Half-integral spin

We now proceed to derive the Feynman propagator for a
particle with arbitrary half-integral spin. We begin with
working out the Feynman propagators for spin 3/2 and
5/2 in detail in order to demonstrate the method employed
in this section. After that, the procedure is generalized to
the case for an arbitrary half-integral spin n + 1/2.

3.2.1 Spin 3/2

In the case of spin 3/2, armed with the wave functions

1 3/2 _
v (z) = Wi Z,,: m;’/z [ (P)U,, (p)e*

+bn )V, (p)e ™)

= v (2)) + v (@), (77)

the projection operator P** (2, p) given by (29a), the field
quantization conditions

{am(p)7a;' (p/)} = 6p,p’6mm’ = {bm(p%b;/(p/)} s (78)

with all others vanishing, together with the definition of
the adjoint field

ot (z) = (T (2))" 7
3/2

:%Z > e @) TP + b, p) Via(p)e

P m=-3/2

- @L(x)(ﬂ + j,u(@(—)) (79)

we find that the general commutation relations take the
following form:

(@@} =ip (3) Al -, (s0)
or equivalently

{W(x)<—>7@(x’)<+>} = ipm (‘3) AP (z — o),

(81a)
{0920, 07 () O} = 1P <i;>> Ao o)
(81b)
where
P (a) =mo-me(3), (s22)
o (2) = 52 -

1 1
1 {W% — o Oy = W) Wauay] .
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The Feynman propagator for spin 3/2 is in the usual fash-
ion defined by

St (x — a') = (0] Tw" (z) ¥ (2')|0)

_ o) @o) t>t,
— ([ ()@ (2)|0) t <,

(83)

and can be rewritten as, with the aid of (81),

S (x —2') = i0(t — t')P* <z> AP (2 — ') (84)

—if(t' — t)P* (2) A (z— 2.

Performing a direct calculation that makes the 8 functions
commuted past the differential operator prv (%), with the
help of (41), one finds that the Feynman propagator for
spin 3/2 in coordinate representation takes the form

SE (x — a') = PHv (Z) Ap(z — ')
R (g) (@ —a),  (85)

where

(3 1
Kr (z> - [3W74 (Ouary = Yubua)

+

s (D=W) %45:/4] . (86)

Utilizing (45), the Fourier representation for Sh”(z) is
found to be

v 1 iz o [ O
5¢0) = e [ et (S). 67

3 —1 3
pyo = - _ - @@ pw [ Z
5t (2’p> =il (2’p)
i (30). (59)
with
(3
e (50) (599)
1 i 1
=P —3 {’Y;/YV = g7 (WPv = WwPp) = szupu] :

K (;’ ) (89b)

1 2 .
= -1 |:3VV'74 (6,u4’71/ - ’7#51/4) +W (1 /f)—W) 6#45u4:| 5
SE” (3,p) is the Feynman propagator for spin 3/2 in mo-
mentum representation.
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3.2.2 Spin 5/2

In a similar manner as in the case of spin 3/2, by using
the wave functions for spin 5/2

5/2
ngle Z Z UV11/2( ) ipx
P m=-— 5/2

+b (p)Vyv> (p)e’“""”]

= prvz(g) () 4 grive(g) (), (90)

the projection operator PHiH2V1V2 (%,p) given by (29b),
the field quantization conditions (78), and the definition
of the adjoint field

7 (@) = (1 @ >>w

5/2

=2 >

P m*—5/2
bin () V2 (P)eip “]
= @Vle (x)(H 4 gz (x)(f),

UVllJQ ( ) —ipx

(91)

we find that the general commutation rules are
{gmuz (a:),u:/”1”2 (x’)} — jprakarive (;) Az — '), (92)

or equivalently

{Q#l/m (1’)(7), Pyrive (I/)(JF)}

= jpranarive <;> AP (z —2'), (93a)
{Wluz () ), grive (f)(—)}
= jpranzrivz (;) A (z — '), (93b)

where

P;Ll,ugulyg (;) — _(/8 _ W)R/L1#2V1V2 (g) , (94&)

A )
REk2vive [
(2)

11~ . . .
— 5 |:PH1V1 PH2V2 + PM1V2PH21/11|

1
- TO Z [’7#171/1

P(uip2)
P(viva)

1
7W (’Y,U«lal’l - fYVlaﬂl) -

_ 1 |:pﬂ1 M2 Pld 1/2]
5

1 ~
WQamayl} Preva (94D

The Feynman propagator for spin 5/2 is defined by

551#21,11,2 (z — x/) = (0| TwHr2 (x)@muz (SC’)|0> (95)

Feynman propagator for a particle with arbitrary spin

(O[# 112 ()17 (/)]0
t>t,

— (0] (! W (2)|0)
t<t,

and can be re-expressed, with the aid of (93), as
Sglqule (l‘ _ x/)
—i0(t — ¢ Prosave (g) A®) (z — o)
- 5
—i0(t' — t) prvaive (2> A (z —a'). (96)

Performing a direct calculation that makes the 8 functions
commuted past the differential operator PH1#2V1V2 (%), we
get

S{;lHQVle ({E _ l’l)
— pripzviva (g) Ap(z —a')
K Hk2viv <g> 5(4)(x — '), (97)

where

f(‘lhﬂzl/ll/z §
2

i(p—-w) 1

- 7? |:2 (5IL1V1§/L245u24
—’_5#1451’1415M2y2 + 5u1u25u245u14 + 5#14&44?“21/1)
1
5

1 i
_TO Z { |:W74 (5H147V1 - 7#151/14)

P(pipz2)
P(vyva)

w2 (/8 W) N145V14:| P“QDQ

((5,““251,1451,24 + 5#146”24]5”1”2)]

W
8,1,40,,
+(/8 - W)%M’Ym <u‘;[1/24> } .

This is the Feynman propagator for spin 5/2 in co-
ordinate representation. The Fourier representation for
SEHPIY (1) can be easily deduced, using (45),

(98)

1 . )
S{;luwlug (z) = (2n)4/d4p61pm5§1#2u1u2 <2,p) . (99)

[ 282 5
S{;‘LIHQ (27]7)

-1 5 5
= 4/{)7 iWJrigthlqulW (2’1)) + KHiH2v2 <27p) ,

with

RH1#2V1V2 (;7]))

(100)
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— 1 [P#1V1P#2V2 + P#1V2P#2l/1] _ % [P#l#zplllvz]

2
1 i
T E Y1 V1 — 157 ('Ymplfl - 7V1pu1)
10 w
P(pip2)
P(viva)

1
szmpul] preve,

K H1H2v1v2 (;729)

_ i p-w) [1

(101a)

W2 5 (6M1V1 5#2451124 + 6/£1461’14PM2V2

+0,11 15000400, 4 + 0y, 40,4 PH2Y)

1
,g (6#11L26V145V24 + 5#145N24PV1V2)]
1 i
R C——
P(uip2)
P(viv2)

i
~73

. 8,40,
+(0 L= W)Y, (W) } :

(i /ﬁ - W) 5#145V14:| prere
(101b)

Similar to the previous case, Sg'#2"*"2 (3, p) in the above
is the Feynman propagator for spin 5/2 in momentum
representation.

3.2.3 Spinn+1/2

The above procedure is now extended to the general case
of arbitrary half-integral spin n+1/2. We begin by working
out the general commutation rules. From (10), (12), (15),
(23) and (78), we get, by following the same steps as in
the cases of spin 3/2 and 5/2:

{Wﬂll’&"'#n (x), grive - vn (x/)}
1

= {Prakzinivasin (n + 2> Az — ), (102)
or equivalently
{Wluz--~un (2)(7), grave-vn (x/)<+>}
= jpranzpnvivasin (n + ;) AN (. —2), (103a)
{g,umzmun (z)(H), Gravevn (:c’)(_)}
_ PHaszpnviva vy (n—l— ;) A(_)(x — ), (103b)

with

prasepnvivav, (nJr ;)

. 1
= _(/8 _ W)R#l#z'“#nvlvzml/n (n + 2) , (104)
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where RH1HnV1Vn (n + %) is a differential operator con-

structed from Q1 Hn¥1 0 (n + %,p) in the following way
(refer to (28)):

3PHIVL pH2Vz . PhnVn — 3 PHVI P2V . Plintn (1(0)5)

i 1
[7#171/1 + W ('Ympul - 'Vulpul) + Wpulpul]
XP.UQVQ e P,U‘nun
1 1
= |V Yo — w (7#18V1 — T am) - Wamam

x PHavz ... Phnvn, (106)

The Feynman propagator for spin n + 1/2 is defined by

R ) (107)
= <0‘Tkpu1uz~-un(x)kﬁvwz---un (x/)|0>
(0] s () (270}
B t>t,
T - 0 e )0
t<t,
and can be rewritten as, using (103),
Shrp a2 n (1 o) (108)
R 1
=10(t — t")prarzkniivzn (n + 2) A (z —2')

N 1
—iQ(t/ — )Pk Ve, <n + 2) A (z —2').

Performing a step-by-step calculation that makes the
0 functions commute past the differential operator
prapzpniveva (4 1 e find that the general expres-
sion for the Feynman propagator for spin n+ 1/2 in coor-
dinate representation is

S/FJ:IILE"'/"n’/1V2"'Vn (z— x')

N 1
— PH1IH2pnV1V2Vn (’I’L+ 2) AF(J?—x/) (109)

N 1

where KH1 = Hn¥1Vn (n + %) is resulting from the commu-

tation between the 6 functions and Pri-H#nv1-vn (n + %),
and consists of two kinds of terms [refer to (105)
and (106)]; one originates from terms such as

(D — W)3Prvi prava ... Pinvn and can be expressed as
731((&;!‘/) [Bravinzvainva] hecause of

i0(t) (O — W) Provprava ... plnva AGH (g)
—if(—t) (9 — W) P
—i0(—t) (B — W) Praviprava ... prave A ()
= (9 — W) Pravipravz ... pintn Ap ()
p-w)

+—7 (110)

[B#1V1#2V2”'P'nl’n 5(4) (.13),
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where BH1v1hzvztinvn g the same operator as in the case
of integral spin (see (71)), the other originates from terms
such as

(D-=W)

1 1
X Yo Yo — W (’Yﬂl 61/1 — Y1 apu) - Waul aul
Punyn7

XPH2V2 e

and can be expressed by CH1¥1#2v2 intn hecause of

i6() (=) {'mnulvlv(vmam D) — 0,0 ]

W2 1™Vl
x Prava . prnin A () —i0(~t) (9 — W)
1
X l:’)/;n’ylﬂ - W (7#181/1 - ’7V18,u1) W2 8#18V1:|

x Prave ... prnvn A5 ()
1 1
= (ﬁfW) |E.Y#17V1W (7#18V1 771/18#1) - ﬁa;u av1:|
)P Pt A ()
+OH1V1H2V2"'unVn§(4) (l‘), (1113)
with
C’#llll
|1 1
=1 W’M (6#1471/1 77#15%4) 7@ (ﬁ*W) 5/L145u14 5
C«mmuzuz
— éﬂlVl ]5#2112 : w 6,LL245V24
= +i(0 = W)Y w2 )
éH1V1H2V2M3V3
_ waumw JSM3V3
. 011540054
+1</8 - W)’YMI’YVI(S},LQVQ W y Ty
C‘MlVleVZ"'MnVn
— OM1V1M2V2"'N'VL71V7L71puvLVn (lllb)
: 0 ,,461/7,4
+1(ﬁ7W)%1 ez 5#2”2 6#3”3' ’ '6/%,71”77,71 <#VV2> :

H1p2PnV1V2" Vn()

The Fourier representation for Sg can be

easily derived, using (45),

Sglﬂ?”ﬂnl/ll/z“'l’n (:E) (112&)

1 ipa V1V 1
_ (2n)4 /d4pelz)xsg1lﬁ2 HnV1V2 n (n+ 2,17)7

Sg1#2"'MnV1V2'“Vn <n+ ;,p)

-1

1
— _  PHIH2HpViV2:Vn =
Wi (”*ﬂ’)

(112b)

0N U (n + ;,p> :

Feynman propagator for a particle with arbitrary spin

with

RNlHT“Hn'/lVQ“‘Vn (TL+ ;71))

R 1
_ RHI#Z"'#7LV1V2"'V" (TL+ 2) s (113&)
Op=ipy
) GRS N R (n + 1’p>
2
N 1
— KH1H2“'/"‘nV1V2"‘Vn (n _|_ ) (113b)
2 /s -
n=1Pp

Equation (112b) gives the general momentum representa-
tion for the Feynman propagator for an arbitrary half-
integral spin. As an illustration of these formulas, we pro-
vide finally the explicit expression for the propagator for

Spin A /2:
1 3V1V2V3 l
S M2 (271[)

— —1 RH1H2H3VIV2VS zp
p—iW +ie 2’

+K#1#2#3V1V2V3 (;,p> , (114)
where
7
RM1N2M3V1V2V3 -,
(52)
= % Z PHivi pH2v2 pH3V3
P(vivavs)
1
_ PH1H2 pV1V2 DU3V3S
280 Z
P(u1p2p3)
P(vivavg)
1 i
_SZ Z Yy Yoy — W (’7;1«1101/1 - ’Yu1p/t1)
P(p1paps)
P(vivavy)
1 H2V2 DH3V3
W2pu1pm prezp
+3 (7;11’7;12 - ,leplw ’YNZle)
+VV2pH1pH2) privz prsvs
+z (vulwl — w5 (Wi Pus = Ypa P )
W2pltlpu1> P#2N3PV2V3:| } ) (115&)

K#1#2M3V1V2V3 (;J))

X

1 E B/—"l”ll"QVQ,U'ISVfS
6

P(V1V2V3)
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1 E BHip2v1V2p3Ys

280
P(p1p2p3)
P(vivavg)
1
- H1V1p2V2 433
tg 2 [©
P(pipap3)
P(vivavy)
2 1Z28% V. 1 v vaVs
_|_§CAL1#2 1W2H3Vs go L p2psVVs | (115Db)
with
C,LL1U1[L2V2H3V3 (116&)
V1 oV 3Us i(i 1) -w
— CHVikzv2 pHsvs % ['7u1'7V15M2V25N345V34] ,
CM1V1H2V2 (116b)
iip—W
— QM1 plava % [’7#171/1 (5#2451124] ,
Crave (116C)
I1 ip—W)
=1 W74 (5H147V1 - 7#151114) - T(S’“MSVA

In summary, the projection operator for an arbitrary
integral and half-integral spin constructed by Behrends
and Fronsdal has been confirmed and simplified by direct
derivation based on the explicit expression of the wave
functions, the commutation rules and a general expres-
sion for the Feynman propagator for an arbitrary integral
and half-integral spin are deduced, and especially explicit
expressions for the propagators for spin 3/2, 2, 5/2, 3, 7/2
and 4 are provided.
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