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Abstract. Based on the solution to the Rarita–Schwinger equations, a direct derivation of the projection
operator and propagator for a particle with arbitrary spin is worked out. The projection operator con-
structed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral
spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived,
and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided.

1 Introduction

In order to perform analyses for high energy processes such
as

b1(1235) → ω + π, p̄p(3P2) → f2(1270) + π,

a3(2050) → f2(1270) + π, H → W+W−,
J/Ψ → a2(1320) + ρ,

and so on, it is necessary to employ higher spin relativistic
wave functions, projection operators and Feynman prop-
agators [1–4]. Recently, a systematical method [5] was de-
veloped to solve the Rarita–Schwinger [6] equations and
derive explicit positive and negative energy wave functions
for higher spin particles. Based on this work, we have car-
ried out a further investigation on the projection operator,
the commutation rules and the Feynman propagator for a
free particle with arbitrary spin. The results are reported
in the present paper.

The concept of higher spin projection operators was
first introduced by Behrends and Fronsdal [7,8] in 1957
when they undertook a calculation of the lifetimes and
spectra of Fermi decays for higher spin particles. Based
on the properties of these operators derived from the
Klein–Gordon and Rarita–Schwinger equations, they con-
structed an explicit form of the projection operators for
particles with arbitrary integral or half-integral spins. This
construction was carried out first in the rest system and
then generalized to an arbitrary frame. In 1965, Zemach
[9] proposed an alternative way to construct this kind of
projection operators in the rest frame. However, it has
been found recently by Chung [1,2] and by Filippini et al.
[4] that the Zemach formalism is incorrect because it is es-
sentially a non-relativistic one. Considering that the B-F

formulas are basically constructed in the rest frame, an in-
dependent check of their correctness might be necessary.
A direct calculation of these projection operators based
on the explicit expressions of the wave functions and per-
formed in an arbitrary frame should yield a reliable check.
The first part of the present work will be devoted to this
check. The results show that the B-F formulas are correct.
It is found that the projection operators for half-integral
spins should be derived in a way different compared with
that for integral spins, because Dirac γ matrices are in-
volved in this case. They are derived by virtue of a set
of newly found sum relations about γ matrices and spins
1/2 and 1 wave functions, and are simplified such that it
is suitable for calculation of the Feynman propagators.

The propagator for a free particle of arbitrary spin
j was first studied by Weinberg [10] in 1964; the treat-
ment is based on a 2j + 1-component field ϕm(x)(m =
j, j − 1, · · · ,−j) constructed from the 2j + 1-dimensional
unitary representation of the boost operation. The prop-
agator is defined as the vacuum expectation value of
time-ordered field component operators, S(j)

mm′(x − y) =
〈T{ϕm(x)ϕ+

m′(y)}〉0. It is emphasized by Weinberg in this
work that for particles with spin j ≥ 1, there appear
extra non-covariant terms in the propagator (called the
“raw” propagator), and that the cure to this problem
would be to add non-covariant “contact” terms to the
Hamiltonian in such a way as to cancel out these non-
covariant terms, so that the “true” propagator used in
the Feynman rules contains only the covariant part. In
1968, Scadron [11] calculated the high-spin propagator in
a different formalism. The wave functions used in this cal-
culation are tensors or tensor-spinors that are constructed
by Auvil and Brehm [9] and are re-derived in our pre-
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vious work [5]. In the Scadron approach, however, it is
the contracted propagator (numerator) that was stud-
ied, which is defined as a contraction of the spin sum,∑

m eµ1µ2···µn
m (K)ēν1ν2···νn

m (K), with the initial momenta
pν1pν2 · · · pνn and the final momenta p′µ1p′µ2 · · · p′µn . In
1992, based on the work of Weinberg [10], Ahluwalia
and Ernst [12] suggested that the high-spin propagators
can be constructed as that of spin 1/2. Their definition
of the propagator (different from that of Weinberg) is
S(j)(x − y) = 〈T{Ψ (j)(x)Ψ̄ (j)(y)}〉0, the vacuum expec-
tation value of time-ordered field operators Ψ (j)(x), which
are the spin sums of the field components, Ψ (j)(x) =∑

m ψm(x). However, no explicit expressions for the prop-
agators were derived since the spin sum of the spinors
is not worked out. In the second part of this paper, we
shall choose the field operators Ψ (j)(x) as the solutions
to the Rarita–Schwinger equations [5,6] to calculate the
propagators defined as the vacuum expectation value of
time-ordered field operators. We shall work out the co-
variant part of the Feynman propagator as well as the ex-
tra non-covariant terms for a particle with arbitrary spin.
Although only the covariant part will be used in the Feyn-
man rules, the non-covariant terms might serve as guides
to the construction of the Hamiltonian as pointed out by
Weinberg [10]. It is found that there is a new kind of extra
non-covariant terms originating from the γ factors in the
expression of the propagator for a half-integral spin, be-
sides that for an integral spin. These terms will be derived
in a step-by-step way. Especially, explicit expressions for
the propagators for spins 3/2, 2, 5/2, 3, 7/2 and 4, which
are often useful for experimentalists, are worked out in de-
tail. Our formulas for the propagators are different from
those derived by Weinberg [10] because the definitions are
different and the field operators are also different, while
by contracting our propagators with the initial and final
momenta, a contracted propagator consistent with that
derived by Scadron [11] could be produced because we
used the same spin sums of tensors or tensor-spinors that
satisfy the Rarita–Schwinger equations. Such an equiva-
lence, however, will not be discussed in the present work.

2 The projection operator

2.1 Integral spin

For a particle with arbitrary integral spin n and rest-mass
W , the wave functions could be expressed as

Aν1ν2···νn(x) =
∑

p

n∑
m=−n

1√
2EV

[
am(p)eν1ν2···νn

m (p)eipx

+b+m(p)ēν1ν2···νn
m (p)e−ipx

]
, (1a)

where E =
√

p2 +W 2, p = (p, iE), eν1ν2···νn(p) and
ēν1ν2···νn(p) are, respectively, the positive and negative en-
ergy wave functions in the momentum representations and
satisfy the wave equation

(p2 +W 2)Aν1ν2···νn(p) = 0, (1b)

and the subsidiary conditions

Aν1ν2···νi···νj ···νn(p) = Aν1ν2···νj ···νi···νn(p), (1c)
pνA

νν2···νi···νj ···νn(p) = 0, (1d)
Aννν3···νn(p) = 0; (1e)

here Aν1ν2···νn(p) stands for eν1ν2···νn(p) or ēν1ν2···νn(p).
The solution to (1b)–(1e) has been carried out previously
and the results can be written as [5]

eν1ν2···νn
m (p) (2a)

=
1∑

λn=−1

〈n−1,m−λn, 1, λn |n−1, 1, n,m 〉

×eν1ν2···νn−1
m−λn

(p)eνn

λn
(p),

ēν1ν2···νn
m (p) (2b)

=
1∑

λn=−1

〈n−1,m−λn, 1, λn |n−1, 1, n,m 〉

×ēν1ν2···νn−1
m−λn

(p)ēνn

λn
(p),

where eν
λ(p) and ēν

λ(p) are the positive and negative en-
ergy wave functions for spin 1 and are related by

ēνi

λi
(p) = gνiµi

(
eµi

λi
(p)

)∗ = (−1)λieνi

−λi
(p),

gνiµi
= diag {1, 1, 1,−1} . (2c)

The wave functions eν1ν2···νn(p) and ēν1ν2···νn(p) are nor-
malized according to

eν1ν2···νn
m (p)ēν1ν2···νn

m′ (p) = δm,m′ . (2d)

As in the case of spin 1, the projection operator for spin
n is defined as

Pµ1µ2···µnν1ν2···νn(n, p)=
n∑

m=−n

eµ1µ2···µn
m (p)ēν1ν2···νn

m (p).

(3)
From (1b)–(1e) and the normalization condition (2d), it
is easy to find that the projection operator possesses the
following properties [7,8]:

Pµ1µ2···µnν1ν2···νi···νj ···νn(n, p)
= Pµ1µ2···µnν1ν2···νj ···νi···νn(n, p), (4a)
pνP

µ1µ2···µnνν2···νn(n, p) = 0, (4b)
Pµ1µ2···µnννν3···νn(n, p) = 0, (4c)
Pµ1µ2···µnν1ν2···νn(n, p)P ν1ν2···νnε1ε2···εn(n, p)
= Pµ1µ2···µnε1ε2···εn(n, p). (4d)

By using the explicit expressions for eν1ν2···νn(p) and
ēν1ν2···νn(p), and the projection operator for spin 1 given
by

Pµ1ν1(p) =
1∑

λ=−1

eµ1
λ (p)ēν1

λ (p) =
1∑

λ=−1

ēµ1
λ (p)eν1

λ (p)

= δµ1ν1 +
pµ1pν1

W 2 , (5)
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one can perform a direct calculation of the projection op-
erator for a given integral spin. For example, in the case of
spin 2, by utilizing the explicit form of the positive energy
wave functions listed below:

eν1ν2
2 = eν1

+1e
ν2
+1, eν1ν2

1 =
1√
2
[eν1

+1e
ν2
0 + eν1

0 e
ν2
+1],

eν1ν2
0 =

1√
6
[eν1

+1e
ν2
−1 + 2eν1

0 e
ν2
0 + eν1

−1e
ν2
+1],

eν1ν2
−1 =

1√
2
[eν1

0 e
ν2
−1 + eν1

−1e
ν2
0 ], eν1ν2

−2 = eν1
−1e

ν2
−1,

and the corresponding negative energy wave functions
ēµ1µ2
m (which can be listed by replacing eν

λ with ēµ
λ in the

above expressions), and noticing that ēν
λ = (−1)λeν

−λ, a
straightforward calculation leads to

Pµ1µ2ν1ν2(2, p) =
2∑

m=−2

ēµ1µ2
m eν1ν2

m

=
1
2

∑
λ

ēµ1
λ eν1

λ

∑
λ′
ēµ2
λ′ e

ν2
λ′ +

1
2

∑
λ

ēµ1
λ eν2

λ

∑
λ′
ēµ2
λ′ e

ν1
λ′

−1
3

∑
λ

ēµ1
λ eµ2

λ

∑
λ′
ēν1
λ′ e

ν2
λ′

=
1
2
Pµ1ν1Pµ2ν2 +

1
2
Pµ1ν2Pµ2ν1 − 1

3
Pµ1µ2P ν1ν2 , (6a)

or alternatively, by using Pµiνi = P νiµi ,

Pµ1µ2ν1ν2(2, p) (6b)

=
1
4

∑
P (µ1µ2)
P (ν1ν2)

[
Pµ1ν1(p)Pµ2ν2(p) − 1

3
Pµ1µ2(p)P ν1ν2(p)

]
,

where the sum is over all permutations of the µ’s and ν’s.
Similarly, in the case of spin 3, by utilizing the following
explicit form of the positive energy wave functions:

eν1ν2ν3
3 = eν1

+1e
ν2
+1e

ν3
+1,

eν1ν2ν3
2 =

1√
3
[eν1

+1e
ν2
+1e

ν3
0 + eν1

+1e
ν2
0 e

ν3
+1 + eν1

0 e
ν2
+1e

ν3
+1],

eν1ν2ν3
1 =

1√
15

[eν1
+1e

ν2
+1e

ν3
−1 + eν1

+1e
ν2
−1e

ν3
+1 + eν1

−1e
ν2
+1e

ν3
+1

+2eν1
+1e

ν2
0 e

ν3
0 + 2eν1

0 e
ν2
+1e

ν3
0 + 2eν1

0 e
ν2
0 e

ν3
+1],

eν1ν2ν3
0 =

1√
10

[eν1
+1e

ν2
0 e

ν3
−1 + eν1

0 e
ν2
+1e

ν3
−1 + eν1

+1e
ν2
−1e

ν3
0

+2eν1
0 e

ν2
0 e

ν3
0 + eν1

−1e
ν2
+1e

ν3
0

+eν1
0 e

ν2
−1e

ν3
+1 + eν1

−1e
ν2
0 e

ν3
+1],

eν1ν2ν3
−1 =

1√
15

[2eν1
0 e

ν2
0 e

ν3
−1

+2eν1
0 e

ν2
−1e

ν3
0 + 2eν1

−1e
ν2
0 e

ν3
0 + eν1

+1e
ν2
−1e

ν3
−1

+eν1
−1e

ν2
+1e

ν3
−1 + eν1

−1e
ν2
−1e

ν3
+1],

eν1ν2ν3
−2 =

1√
3
[eν1

0 e
ν2
−1e

ν3
−1 + eν1

−1e
ν2
0 e

ν3
−1 + eν1

−1e
ν2
−1e

ν3
0 ],

eν1ν2ν3
−3 = eν1

−1e
ν2
−1e

ν3
−1

and the corresponding negative energy wave functions, one
finds by direct calculation

Pµ1µ2µ3ν1ν2ν3(3, p) =
3∑

m=−3

ēµ1µ2µ3
m eν1ν2ν3

m

=
1
6

[Pµ1ν1Pµ2ν2Pµ3ν3 + Pµ1ν1Pµ2ν3Pµ3ν2

+Pµ1ν2Pµ2ν1Pµ3ν3 + Pµ1ν2Pµ2ν3Pµ3ν1

+Pµ1ν3Pµ2ν1Pµ3ν2 + Pµ1ν3Pµ2ν2Pµ3ν1 ]

− 1
15

[Pµ1µ2P ν1ν2Pµ3ν3 + Pµ1µ3P ν1ν2Pµ2ν3

+Pµ2µ3P ν1ν2Pµ1ν3 + Pµ1µ2P ν1ν3Pµ3ν2

+Pµ1µ3P ν1ν3Pµ2ν2 + Pµ2µ3P ν1ν3Pµ1ν2

+Pµ1µ2P ν2ν3Pµ3ν1 + Pµ1µ3P ν2ν3Pµ2ν1

+Pµ2µ3P ν2ν3Pµ1ν1 ] , (7a)

or alternatively,

Pµ1µ2µ3ν1ν2ν3(3, p) (7b)

=
1
36

∑
P (µ1µ2µ3)
P (ν1ν2ν3)

[
Pµ1ν1Pµ2ν2Pµ3ν3−3

5
Pµ1µ2P ν1ν2Pµ3ν3

]
.

This method could be generalized to the case of spin
4, 5, · · · The expressions given by (6b) and (7b) and so on
are exactly the same as the ones constructed by Behrends
and Fronsdal [7,8], which can be written, in our notation,

Pµ1µ2···µnν1ν2···νn(n, p) (8)

=
(

1
n!

)2 ∑
P (µ)
P (ν)




n∏
i=1

Pµiνi +A1P
µ1µ2P ν1ν2

n∏
i=3

Pµiνi + · · ·

+ArP
µ1µ2P ν1ν2Pµ3µ4P ν3ν4 · · ·

Pµ(2r−1)µ2rP ν(2r−1)ν2r

n∏
i=2r+1

Pµiνi + · · ·

+



An/2P

µ1µ2P ν1ν2 · · ·Pµn−1µnP νn−1νn

(for even n)
A(n−1)/2P

µ1µ2P ν1ν2 · · ·Pµn−2µn−1P νn−2νn−1Pµnνn

(for odd n)


 ,

with

Ar(n) (9)

=
(

−1
2

)r
n!

r!(n−2r)!(2n−1)(2n−3) · · · (2n−2r+1)
.

Thus the B-F projection operator for integral spin is con-
firmed.
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2.2 Half-integral spin

For a particle with arbitrary half-integral spin n+ 1/2 (n
is an integral), the wave function may be expressed by [5]

Ψν1ν2···νn(x) =
1√
V

∑
p

n+1/2∑
m=−(n+1/2)

[
am(p)Uν1ν2···νn

m (p)eipx

+b+m(p)V ν1ν2···νn
m (p)e−ipx

]
, (10)

where Uν1ν2···νn(p) and V ν1ν2···νn(p) are, respectively, the
positive and negative energy wave functions in momentum
representations and take the following form:

Uν1ν2···νn
m (p) =

√
n+ 1

2 +m

2n+ 1
eν1ν2···νn

m− 1
2

(p)u 1
2
(p) (11a)

+

√
n+ 1

2 −m

2n+ 1
eν1ν2···νn

m+ 1
2

(p)u− 1
2
(p),

V ν1ν2···νn
m (p) =

√
n+ 1

2 +m

2n+ 1
ēν1ν2···νn

m− 1
2

(p)v 1
2
(p) (11b)

+

√
n+ 1

2 −m

2n+ 1
ēν1ν2···νn

m+ 1
2

(p)v− 1
2
(p),

with ur(p) and vr(p)(r = ±1/2) the usual Dirac 1/2
spinors. The adjoint field of Ψν1ν2···νn(x) is as in the case
of spin 1/2 defined by

Ψ̄ν1ν2···νn(x) = (Ψν1ν2···νn(x))+ γ4

=
1√
V

∑
pm

[
a+

m(p)Ūν1ν2···νn
m (p)e−ipx

+b(mp)V̄ ν1ν2···νn
m (p)eipx

]
, (12)

where

Ūν1ν2···νn
m (p) =

√
n+ 1

2 +m

2n+ 1
ēν1ν2···νn

m− 1
2

(p)ū 1
2
(p) (13a)

+

√
n+ 1

2 −m

2n+ 1
ēν1ν2···νn

m+ 1
2

(p)ū− 1
2
(p),

V̄ ν1ν2···νn
m (p) =

√
n+ 1

2 +m

2n+ 1
eν1ν2···νn

m− 1
2

(p)v̄ 1
2
(p) (13b)

+

√
n+ 1

2 −m

2n+ 1
eν1ν2···νn

m+ 1
2

(p)v̄− 1
2
(p),

ūr(p) = u+
r (p)γ4, v̄r(p) = v+

r (p)γ4. (13c)

These wave functions are normalized according to

Ūν1ν2···νn
m (p)Uν1ν2···νn

m′ (p)
= −(W/E)δmm′ = V̄ ν1ν2···νn

m (p)V ν1ν2···νn

m′ (p), (14a)
Ūν1ν2···νn

m (p)V ν1ν2···νn

m′ (p)

= V̄ ν1ν2···νn
m (p)Uν1ν2···νn

m′ (p) = 0. (14b)

In a similar fashion as in the case of spin 1/2, the projec-
tion operator for spin n+ 1/2 is defined by

Pµ1µ2···µnν1ν2···νn

+ (p)

=
∑
m

Uµ1µ2···µn
m (p)Ūν1ν2···νn

m (p), (15a)

Pµ1µ2···µnν1ν2···νn

− (p)

=
∑
m

V µ1µ2···µn
m (p)V̄ ν1ν2···νn

m (p). (15b)

Armed with the explicit expressions for Uν1ν2···νn
m and

V ν1ν2···νn
m , and the projection operators for spin 1 [see (5)]

and 1/2 given by

Λ+ =
1/2∑

r=−1/2

ur(p)ūr(p) =
� p+ iW

2iE
,

Λ− =
1/2∑

r=−1/2

vr(p)v̄r(p) =
� p− iW

2iE
, (16)

together with the following newly found sum relations con-
cerning γ matrices and spin 1/2 and spin 1 wave functions:

γνe
ν
+1u 1

2
= 0,

1
i
√

2
γ5γνe

ν
+1u− 1

2
= u 1

2
,

ū 1
2
γν ē

ν
+1 = 0, − 1

i
√

2
ū− 1

2
γν ē

ν
+1γ5 = ū 1

2
, (17a)

iγ5γνe
ν
0u 1

2
= u 1

2
, −iγ5γνe

ν
0u− 1

2
= u− 1

2
,

−iū 1
2
γνe

ν
0γ5 = ū 1

2
, iū− 1

2
γνe

ν
0γ5 = ū− 1

2
, (17b)

− 1
i
√

2
γ5γνe

ν
−1u 1

2
= u− 1

2
, γνe

ν
−1u− 1

2
= 0,

1
i
√

2
ū 1

2
γν ē

ν
−1γ5 = ū− 1

2
, ū− 1

2
γν ē

ν
−1 = 0, (17c)

and

γ5Λ+γ5 = −Λ−, γσP
σµΛ− = −Λ+γσP

σµ,

γσP
σµγ5Λ+γ5 = Λ+γσP

σµ, (18)

one can perform a direct calculation of the projection op-
erator for an arbitrary half-integral spin. For example, in
the case of spin 3/2, by utilizing the explicit form of the
positive energy wave functions listed below:

Uµ
3
2
(p) = eµ

+1(p)u 1
2
(p),

Uµ
1
2
(p) =

√
1
3
eµ
+1(p)u− 1

2
(p) +

√
2
3
eµ
0 (p)u 1

2
(p),

Uµ

− 1
2
(p) =

√
2
3
eµ
0 (p)u− 1

2
(p) +

√
1
3
eµ
−1(p)u 1

2
(p),

Uµ

− 3
2
(p) = eµ

−1(p)u− 1
2
(p),

a straightforward calculation leads to

Pµν
+

(
3
2
, p

)
=

3/2∑
m=−3/2

Uµ
m(p)Ūν

m(p) (19)
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= Λ+

[
Pµν(p) − 1

3
γσγρP

σµ(p)P ρν(p)
]
.

Similarly,

Pµν
−

(
3
2
, p

)
=

3/2∑
m=−3/2

V µ
m(p)V̄ ν

m(p) (20)

= Λ−

[
Pµν(p) − 1

3
γσγρP

σµ(p)P ρν(p)
]
.

Combining (19) and (20), we get

Pµν
±

(
3
2
, p

)
= Λ±Qµν

(
3
2
, p

)
, (21a)

Qµν

(
3
2
, p

)
= Pµν(p) − 1

3
γσγρP

σµ(p)P ρν(p). (21b)

By using the following relations:

Pµν = P νµ, γσγρP
σρ = 3, (21c)

γσγρP
σνP ρµ = 2Pµν − γσγρP

σµP ρν ,

one can rewrite Qµν
( 3

2 , p
)

as

Qµν

(
3
2
, p

)
=

2
5
γσγρP

σµρν(2, p), (21d)

where Pσµρν(2, p) is the projection operator for spin 2.
Similarly, in the case of spin 5/2, a direct calculation re-
sults in

Pµ1µ2ν1ν2
±

(
5
2
, p

)
= Λ±Qµ1µ2ν1ν2

(
5
2
, p

)
,

Qµ1µ2ν1ν2

(
5
2
, p

)
=

3
7
γσγρP

σµ1µ2ρν1ν2(3, p), (22)

where Pσµ1µ2ρν1ν2(3, p) is the projection operator for spin
3. From these results it is possible to write down a general
expression for the spin n + 1/2 projection operator such
as

Pµ1µ2···µnν1ν2···νn

±

(
n+

1
2
, p

)
(23a)

= Λ±Qµ1µ2···µnν1ν2···νn

(
n+

1
2
, p

)
,

Qµ1µ2···µnν1ν2···νn

(
n+

1
2
, p

)
(23b)

=
n+ 1
2n+ 3

γµγνP
µµ1···µnνν1···νn(n+ 1, p),

where Pµµ1···µnνν1···νn(n+ 1, p) is the projection operator
for spin n+ 1, namely

Pµµ1···µnνν1···νn(n+ 1, p)

=
n+1∑

m=−(n+1)

eµµ1µ2···µn
m (p)ēνν1ν2···νn

m (p). (24)

The expressions given by (23a) and (23b) are consistent
with that constructed by Behrends and Fronsdal [7]. In
what follows, we give a general proof for these expressions.
Considering the positive energy projection operator, it can
be written, using (11a) and (13a), as

Pµ1µ2···µnν1ν2···νn

+ (n+ 1/2, p)

=
n+1/2∑

m=−(n+1/2)

Uµ1µ2···µn
m (p)Ūν1ν2···νn

m (p)

=
1

2n+1

n+1∑
m=−(n+1)

[
(n+1+m)eµ1µ2···µn

m (p)u 1
2
(p)

×ū 1
2
(p)ēν1ν2···νn

m (p)

+
√

(n+ 1 +m)(n−m)eµ1µ2···µn
m (p)u 1

2
(p)

×ū− 1
2
(p)ēν1ν2···νn

m+1 (p)

+
√

(n+ 1 +m)(n−m)eµ1µ2···µn

m+1 (p)u− 1
2
(p)

×ū 1
2
(p)ēν1ν2···νn

m (p) (25)

+ (n−m)eµ1µ2···µn

m+1 (p)u− 1
2
(p) ū− 1

2
(p)ēν1ν2···νn

m+1 (p)
]

(notice eµ1µ2···µn
m = 0 when m > n or m < −n). On the

other hand, we have from (24) and (2)

n+ 1
2n+ 3

Λ+γµγνP
µµ1···µnνν1···νn(n+ 1, p)

=
n+ 1
2n+ 3

Λ+γµ

n+1∑
m=−(n+1)

×
[

1∑
λ=−1

〈n,m−λ, 1, λ|n, 1, n+1,m〉 eµ1µ2···µn

m−λ (p)

×eµ
λ(p)]

×
[

1∑
λ=−1

〈n,m−λ, 1, λ|n, 1, n+1,m〉 ēν1ν2···νn

m−λ (p)

× ēν
λ(p)] γν

=
Λ+γµ

(2n+ 3)(2n+ 1)

×
n+1∑

m=−(n+1)

{
(n+m+ 1)(n+m)

2

×eµ1µ2···µn

m−1 (p)eµ
1 (p)ēν1ν2···νn

m−1 (p)ēν
1(p)

+ (n+m+ 1)

√
(n+m)(n−m+ 1)

2
×eµ1µ2···µn

m−1 (p)eµ
1 (p)ēν1ν2···νn

m (p)ēν
0(p)

+
1
2

√
(n2 −m2)[(n+ 1)2 −m2]

×eµ1µ2···µn

m−1 (p)eµ
1 (p)ēν1ν2···νn

m+1 (p)ēν
−1(p)

+ (n+m+ 1)

√
(n+m)(n−m+ 1)

2
×eµ1µ2···µn

m (p)eµ
0 (p)ēν1ν2···νn

m−1 (p)ēν
1(p)
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+ [(n+ 1)2 −m2]eµ1µ2···µn
m (p)eµ

0 (p)ēν1ν2···νn
m (p)ēν

0(p)

+ (n−m+ 1)

√
(n−m)(n+m+ 1)

2
×eµ1µ2···µn

m (p)eµ
0 (p)ēν1ν2···νn

m+1 (p)ēν
−1(p)

+
1
2

√
(n2 −m2)[(n+ 1)2 −m2]

×eµ1µ2···µn

m+1 (p)eµ
−1(p)ēν1ν2···νn

m−1 (p)ēν
1(p)

+ (n−m+ 1)

√
(n−m)(n+m+ 1)

2
×eµ1µ2···µn

m+1 (p)eµ
−1(p)ēν1ν2···νn

m (p)ēν
0(p)

+
(n−m+ 1)(n−m)

2
(26)

×eµ1µ2···µn

m+1 (p)eµ
−1(p)ēν1ν2···νn

m+1 (p)ēν
−1(p)

}
γν ,

where the Wigner formula for the Clebsch–Gordan coeffi-
cients has been used. Utilizing

Λ+γµe
µ
λ(p)

= γµe
µ
λ(p)γ5Λ+γ5 = γµe

µ
λ(p)γ5

(
u 1

2
ū 1

2
+ u− 1

2
ū− 1

2

)
γ5,

and (17), it is not difficult to find that the right side of
(26) is exactly the same as the right hand side of (25).
Hence

Pµ1µ2···µnν1ν2···νn

+

(
n+

1
2
, p

)

=
n+ 1
2n+ 3

Λ+γµP
µµ1···µnνν1···νn(n+ 1, p)γν .

Similarly

Pµ1µ2···µnν1ν2···νn

−

(
n+

1
2
, p

)

=
n+ 1
2n+ 3

Λ−γµP
µµ1···µnνν1···νn(n+ 1, p)γν .

Therefore, the B-F form of the projection operator
for an arbitrary half-integral spin is proved. In view
of the calculation of the propagator, however, the B-
F form is not the simplest one because it contains
many non-independent terms. Fortunately, this prob-
lem can be solved by the following tricks. On one
hand, by using the explicit expression for the spin
n + 1 projection operator and (21d), one can rewrite
Qµ1µ2···µnν1ν2···νn

(
n+ 1

2 , p
)

in a form that contains only
the independent terms, namely, 3Pµ1ν1Pµ2ν2 · · ·Pµnνn ,
γσγρP

σµ1P ρν1Pµ2ν2Pµnνn and their permutations among
the tensor indexes (µ1µ2 · · ·µnν1ν2 · · · νn). On the other
hand, by using

Pµν = δµν +
pµpν

W 2 ,

p2 = −W 2, (27)
Λ± � p = ±iWΛ±,

one can carry out the contraction in terms like
Λ±γσγρP

σµ1P ρν1Pµ2ν2Pµnνn to find that

Λ±γσγρP
σµ1P ρν1Pµ2ν2 · · ·Pµnνn

= Λ±

[
γµ1γν1∓

i
W

(γµ1pν1−γν1pµ1) +
1
W 2 pµ1pν1

]
×Pµ2ν2 · · ·Pµnνn . (28)

After these simplifications, the projection operators can be
expressed in a form that is suitable for the calculation of
the propagators. For example, in the cases of the spins 3/2,
5/2 and 7/2, the projection operators become respectively

Pµν
±

(
3
2
, p

)
(29a)

= Λ±

[
δµν − 1

3
γµγν ± i

3W
(γµpν − γνpµ)

+
2

3W 2 pµpν

]
,

Pµ1µ2ν1ν2
±

(
5
2
, p

)

= Λ±

{
1
2

(Pµ1ν1Pµ2ν2 + Pµ1ν2Pµ2ν1) − 1
5
Pµ1µ2P ν1ν2

− 1
10

∑
P (µ1µ2)
P (ν1ν2)

[
γµ1γν1 ∓ i

W
(γµ1pν1 − γν1pµ1)

+
1
W 2 pµ1pν1

]
Pµ2ν2

}
, (29b)

Pµ1µ2µ3ν1ν2ν3
±

(
7
2
, p

)

= Λ±


1

6

∑
P (ν1ν2ν3)

Pµ1ν1Pµ2ν2Pµ3ν3

− 1
280

∑
P (µ1µ2µ3)
P (ν1ν2ν3)

Pµ1µ2P ν1ν2Pµ3ν3

− 1
84

∑
P (µ1µ2µ3)
P (ν1ν2ν3)

[(
γµ1γν1 ∓ i

W
(γµ1pν1 − γν1pµ1)

+
1
W 2 pµ1pν1

)
Pµ2ν2Pµ3ν3

+
2
9

(
γµ1γµ2 ∓ i

W
(γµ1pµ2 − γµ2pµ1)

+
1
W 2 pµ1pµ2

)
P ν1ν2Pµ3ν3

+
1
5

(
γν1γµ1 ∓ i

W
(γν1pµ1 − γµ1pν1)

+
1
W 2 pµ1pν1

)
Pµ2µ3P ν2ν3

]}
, (29c)

where P (µ1µ2 · · ·µn) stands for permutations of
(µ1, µ2, · · · , µn).
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3 The Feynman propagator

3.1 Integral spin

We now proceed to derive the Feynman propagator for
an arbitrary integral spin. We begin by working out the
Feynman propagator for spin 2 in a procedure similar to
the one by which the propagator for spin 1 [13] is derived.

3.1.1 Spin 2

The wave functions for spin 2 can be expressed as

Aν1ν2(x) =
∑

p

2∑
m=−2

1√
2EV

× [
am(p)eν1ν2

m (p)eipx + b+m(p)ēν1ν2
m (p)e−ipx

]
= Aν1ν2(x)(−) +Aν1ν2(x)(+), (30)

where the superscripts (+) and (−) denote creation and
destruction parts respectively, and

eν1ν2
m (p) (31a)

=
∑
λ1λ2

eν1
λ1

(p)eν2
λ2

(p)〈1, λ1; 1, λ2|1, 1, 2,m〉,

ēν1ν2
m (p) (31b)

=
∑
λ1λ2

ēν1
λ1

(p)ēν2
λ2

(p)〈1, λ1; 1, λ2|1, 1, 2,m〉,

and they are normalized according to

ēν1ν2
m (p)eν1ν2

m′ (p) = δm,m′ , m,m′ = 2, 1, 0,−1,−2. (32)

Utilizing the projection operator given by (6), the field
quantization conditions[

am(p), a+
m′(p′)

]
= δp,p′δmm′ =

[
bm(p), b+m′(p′)

]
, (33)

with all others vanishing, and the definition of the adjoint
field

Āν1ν2(x) = gν1µ1gν1µ2 (Aµ1µ2
m (p))+

=
∑
p,m

1√
2EV

[
a+

m(p)ēν1ν2
m (p)e−ipx + b(mp)eν1ν2

m (p)eipx
]

= Āν1ν2(x)(+) + Āν1ν2(x)(−), (34)

a general commutation rule could be derived and can be
expressed as[

Aµ1µ2(x), Āν1ν2(x′)
]

= iP̂µ1µ2ν1ν2(2)∆(x− x′), (35)

or equivalently[
Aµ1µ2(x)(−), Āν1ν2(x′)(+)

]
= iP̂µ1µ2ν1ν2(2)∆(+)(x− x′), (36a)[
Aµ1µ2(x)(+), Āν1ν2(x′)(−)

]

= iP̂µ1µ2ν1ν2(2)∆(−)(x− x′), (36b)

where

i∆(x− x′) = i∆(+)(x− x′) + i∆(−)(x− x′), (37a)

i∆(+)(x− x′) =
∑
(p)

1
2EV

eip(x−x′),

i∆(−)(x− x′) = −
∑
(p)

1
2ωV

e−ip(x−x′), (37b)

and

P̂µ1µ2ν1ν2(2) =
1
4

∑
P (µ)
P (ν)

[
P̂µ1ν1 P̂µ2ν2 − 1

3
P̂µ1µ2 P̂ ν1ν2

]
,

P̂µν = δµν − ∂µ∂ν

m2 . (38)

The Feynman propagator for spin 2 is defined in a similar
manner as in the case of spin 1 [13] according to

∆µ1µ2ν1ν2
F (x− x′) ≡ 〈0|TAµ1µ2(x)Āν1ν2(x′)|0〉 (39)

=

{
〈0|Aµ1µ2(x)Āν1ν2(x′)|0〉 t>t′,
〈0| Āν1ν2(x′)Aµ1µ2(x)|0〉 t<t′.

With the help of (36), it is not difficult to find

∆µ1µ2ν1ν2
F (x− x′) (40a)

= iθ(t− t′)P̂µ1µ2ν1ν2∆(+)(x− x′)

−iθ(t′ − t)P̂µ1µ2ν1ν2∆(−)(x− x′),

or (setting x′ = 0)

∆µ1µ2ν1ν2
F (x) (40b)

= iθ(t)P̂µ1µ2ν1ν2∆(+)(x) − iθ(−t)P̂µ1µ2ν1ν2∆(−)(x).

By virtue of

∂tθ(t) = δ(t), δ(t)
[
∆(+)(x) +∆(−)(x)

]
= 0,

δ̇(t)
[
∆(+)(x) +∆(−)(x)

]
= δ(4)(x), (41)

performing a calculation that makes the differential op-
erator P̂µ1µ2ν1ν2(2) commute past the θ functions, it is
found that

i
[
θ(t)P̂µ1ν1∆(+)(x) − θ(−t)P̂µ1ν1∆(−)(x)

]
= P̂µ1ν1∆F(x) +

i
W 2 δµ14δν14δ

(4)(x), (42a)

and

i
[
θ(t)P̂µ1ν1 P̂µ2ν2∆(+)(x) − θ(−t)P̂µ1ν1 P̂µ2ν2∆(−)(x)

]
= P̂µ1ν1 P̂µ2ν2∆F(x) (42b)

+
i
W 2

(
δµ1ν1δµ24δν24 + δµ14δν14P̂

µ2ν2

)
δ(4)(x),
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with ∆F(x) = iθ(t)∆(+)(x) − iθ(−t)∆(−)(x); hence
∆µ1µ2ν1ν2

F (x− x′) can be rewritten as

∆µ1µ2ν1ν2
F (x− x′) (43)

= P̂µ1µ2ν1ν2(2)∆F(x− x′) + K̂µ1µ2ν1ν2(2)δ(4)(x− x′),

where

∆F(x−x′) (44a)

= iθ(t−t′)∆(+)(x−x′)−iθ(t′−t)∆(−)(x−x′),

K̂µ1µ2ν1ν2(2) (44b)

=
i

4W 2

∑
P (µ)
P (ν)

[
δµ1ν1δµ24δν24 + δµ14δν14P̂

µ2ν2

−1
3

(
δν14δν24δµ1µ2 + δµ14δµ24P̂

ν1ν2

)]
.

This is the Feynman propagator for spin 2 in coordinate
representation. Using

∆F(x) =
1

(2π)4

∫
d4peipx∆F(p), (45)

∆F(p) =
−i

p2 +W 2 − iε
,

the Fourier representation for ∆µ1µ2ν1ν2
F (x) can be easily

deduced

∆µ1µ2ν1ν2
F (x) =

1
(2π)4

∫
d4peipx∆µ1µ2ν1ν2

F (p), (46a)

∆µ1µ2ν1ν2
F (p) (46b)

= Pµ1µ2ν1ν2(2, p)
−i

p2+W 2−iε
+Kµ1µ2ν1ν2(2, p),

where

Kµ1µ2ν1ν2(2, p)

=
i

4W 2

∑
P (µ)
P (ν)

[δµ1ν1δµ24δν24+δµ14δν14P
µ2ν2

−1
3

(δν14δν24δµ1µ2+δµ14δµ24P
ν1ν2)] . (47)

Equation (46b) gives the Feynman propagator for spin 2
in momentum representation. We emphasize here that the
second part on the right hand side of (43) or (46b) rep-
resents the extra non-covariant term that inevitably ap-
pears in the expression of the propagator for spin larger
than 1/2.

3.1.2 Spin 3

The wave functions for spin 3 are

Aν1ν2ν3(x) (48)

=
∑
p,m

1√
2EV

[
am(p)eν1ν2ν3

m (p)eipx

+ b+m(p)ēν1ν2ν3
m (p)e−ipx

]
= Aν1ν2ν3(x)(−) +Aν1ν2ν3(x)(+),

where

eν1ν2ν3
m (p) (49a)

=
∑

λ12λ3

eν1ν2
λ12

(p)eν3
λ3

(p)〈2, λ12; 1, λ3|2, 1, 3,m〉,

ēν1ν2ν3
m (p) (49b)

=
∑

λ12λ3

ēν1ν2
λ12

(p)ēν3
λ3

(p)〈2, λ12; 1, λ3|2, 1, 3,m〉,

and they are normalized according to

ēν1ν2ν3
m (p)eν1ν2ν3

m′ (p) = δm,m′ ,

m,m′ = 3, 2, 1, 0,−1,−2,−3. (50)

As in the case of spin 2, by using (7), (33) and the defini-
tion of the adjoint field

Āν1ν2ν3(x) = gν1µ1gν1µ2gν3µ3 (Aµ1µ2µ3
m (p))+

=
∑
p,m

1√
2EV

×[a+
m(p)ēν1ν2ν3

m (p)e−ipx + bm(p)eν1ν2ν3
m (p)eipx]

= Āν1ν2ν3(x)(+) + Āν1ν2ν3(x)(−), (51)

we find that the general commutation relation takes the
following form:[
Aµ1µ2µ3(x), Āν1ν2ν3(x′)

]
= iP̂µ1µ2µ3ν1ν2ν3(3)∆(x− x′),

(52)
or equivalently[

Aµ1µ2µ3(x)(−), Āν1ν2ν3(x′)(+)
]

= iP̂µ1µ2µ3ν1ν2ν3(3)∆(+)(x− x′), (53a)[
Aµ1µ2µ3(x)(+), Āν1ν2ν3(x′)(−)

]
= iP̂µ1µ2µ3ν1ν2ν3(3)∆(−)(x− x′), (53b)

where

P̂µ1µ2µ3ν1ν2ν3(3) (54)

=
1
36

∑
P (µ1µ2µ3)
P (ν1ν2ν3)

[
P̂µ1ν1 P̂µ2ν2 P̂µ3ν3−3

5
P̂µ1µ2 P̂ ν1ν2 P̂µ3ν3

]
.

The Feynman propagator for spin 3 is defined by

∆µ1µ2µ3ν1ν2ν3
F (x− x′) ≡ 〈0|TAµ1µ2µ3(x)Āν1ν2ν3(x′)|0〉

=

{
〈0|Aµ1µ2µ3(x)Āν1ν2ν3(x′)|0〉 t > t′,
〈0| Āν1ν2ν3(x′)Aµ1µ2µ3(x)|0〉 t < t′.

(55)

It follows from (53) that

∆µ1µ2µ3ν1ν2ν3
F (x− x′)
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= iθ(t− t′)P̂µ1µ2µ3ν1ν2ν3(3)∆(+)(x− x′) (56)

−iθ(t′ − t)P̂µ1µ2µ3ν1ν2ν3(3)∆(−)(x− x′).

Based on (42a) and (42b), we further find[
iθ(t)P̂µ1ν1 P̂µ2ν2 P̂µ3ν3∆(+)(x)

−iθ(−t)P̂µ1ν1 P̂µ2ν2 P̂µ3ν3∆(−)(x)
]

(57)

= P̂µ1ν1 P̂µ2ν2 P̂µ3ν3∆F(x)

+
i
W 2

[(
δµ1ν1δµ24δν24 + δµ14δν14P̂

µ2ν2

)
P̂µ3ν3

+ δµ1ν1δµ2ν2δµ34δν34] δ
(4)(x),

thus the Feynman propagator for spin 3 in coordinate rep-
resentation can be expressed as

∆µ1µ2µ3ν1ν2ν3
F (x−x′)

= P̂µ1µ2µ3ν1ν2ν3(3)∆F(x−x′) (58)

+K̂µ1µ2µ3ν1ν2ν3(3)δ(4)(x− x′),

where

K̂µ1µ2µ3ν1ν2ν3(3)

=
i

36W 2

∑
P (µ)
P (ν)

{
(δµ1ν1δµ24δν24 + δµ14δν14P̂

µ2ν2

)
P̂µ3ν3

+δµ1ν1δµ2ν2δµ34δν34

−3
5

[(
δµ1µ2δν14δν24 + δµ14δµ24P̂

ν1ν2

)
P̂µ3ν3

+δµ1µ2δν1ν2δµ34δν34]} . (59)

The Fourier representation for ∆µ1µ2µ3ν1ν2ν3
F (x) is, using

(45), given by

∆µ1µ2µ3ν1ν2ν3
F (x) (60)

=
1

(2π)4

∫
d4peipx∆µ1µ2µ3ν1ν2ν3

F (p),

∆µ1µ2µ3ν1ν2ν3
F (p)

= Pµ1µ2µ3ν1ν2ν3(3, p)
−i

p2 +W 2 − iε
+Kµ1µ2µ3ν1ν2ν3(3, p), (61)

with

Kµ1µ2µ3ν1ν2ν3(3) (62)

=
i

36W 2

∑
P (µ)
P (ν)


 (δµ1ν1δµ24δν24 + δµ14δν14P

µ2ν2)Pµ3ν3

+δµ1ν1δµ2ν2δµ34δν34

−3
5

[
(δµ1µ2δν14δν24 + δµ14δµ24P

ν1ν2)Pµ3ν3

+δµ1µ2δν1ν2δµ34δν34

]}
.

Equation (61b) gives the Feynman propagator for spin 3
in momentum representation.

3.1.3 Spin n

The above procedure is now extended to the general case
of an arbitrary integral spin n. We begin by working out
the general commutation rules. From (1a), (8) and (33)
and the definition of the adjoint field

Āν1ν2···νn(x)

= gν1µ1gν1µ2 · · · gνnµn (Aµ1µ2···µn
m (p))+

=
∑
p,m

1√
2EV

[
a+

m(p)ēν1ν2···νn
m (p)e−ipx

+bm(p)eν1ν2···νn
m (p)eipx

]
= Āν1ν2···νn(x)(+) + Āν1ν2···νn(x)(−), (63)

we get, by following the same steps as in the cases of spin
2 and 3 [

Aµ1µ2···µn(x), Āν1ν2···νn(x′)
]

= iP̂µ1µ2···µnν1ν2···νn(n)∆(x− x′), (64)

or [
Aµ1µ2···µn(x)(−), Āν1ν2···νn(x′)(+)

]
= iP̂µ1µ2···µnν1ν2···νn(n)∆(+)(x− x′), (65a)[
Aµ1µ2···µn(x)(+), Āν1ν2···νn(x′)(−)

]
= iP̂µ1µ2···µnν1ν2···νn(n)∆(−)(x− x′), (65b)

where

P̂µ1µ2···µnν1ν2···νn(n) (66)

=
(

1
n!

)2 ∑
P (µ)
P (ν)




n∏
i=1

P̂µiνi +A1(n)P̂µ1µ2 P̂ ν1ν2

n∏
i=3

P̂µiνi

+· · ·+




An/2(n)P̂µ1µ2 P̂ ν1ν2 · · · P̂µn−1µn P̂ νn−1νn

(for even n)
A(n−1)/2(n)P̂µ1µ2 P̂ ν1ν2

· · · P̂µn−2µn−1 P̂ νn−2νn−1 P̂µnνn

(for odd n)


 .

The Feynman propagator for spin n is defined by

∆µ1µ2···µnν1ν2···νn

F (x− x′) (67)
≡ 〈0|TAµ1µ2···µn(x)Āν1ν2···νn(x′)|0〉

=

{
〈0|Aµ1µ2···µn(x)Āν1ν2···νn(x′)|0〉 t > t′,
〈0| Āν1ν2···νn(x′)Aµ1µ2···µn(x)|0〉 t < t′,

and can be rewritten, using (65),

∆µ1µ2···µnν1ν2···νn

F (x− x′)

= iθ(t− t′)P̂µ1µ2···µnν1ν2···νn(n)∆(+)(x− x′) (68)
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−iθ(t′ − t)P̂µ1µ2···µnν1ν2···νn(n)∆(−)(x− x′).

or, as in the cases of spin 2 and 3,

∆µ1µ2···µnν1ν2···νn

F (x− x′)

= P̂µ1µ2···µnν1ν2···νn(n)∆F(x− x′)

+K̂µ1µ2···µnν1ν2···νn(n)δ(4)(x− x′), (69)

where the second term denotes the extra non-covariant
term, which arises when the θ functions are commuted
past the differential operator P̂µ1µ2···µnν1ν2···νn(n). Based
on (42a), (42b) and (57), after a step-by-step calculation,
it is found that[

iθ(t)P̂µ1ν1 P̂µ2ν2 · · · P̂µnνn∆(+)(x)

−iθ(−t)P̂µ1ν1 P̂µ2ν2 · · · P̂µnνn∆(−)(x)
]

= P̂µ1ν1 P̂µ2ν2 · · · P̂µnνn∆F(x)

+
i
W 2

[
B̂µ1ν1µ2ν2···µnνn

]
δ(4)(x), (70)

where

B̂µ1ν1 = [δµ14δν14] ,

B̂µ1ν1µ2ν2 = B̂µ1ν1 P̂µ2ν2 + δµ1ν1δµ24δν24,

B̂µ1ν1µ2ν2µ3ν3 = B̂µ1ν1µ2ν2 P̂µ3ν3

+δµ1ν1δµ2ν2δµ34δν34, · · · ,
B̂µ1ν1µ2ν2···µnνn = B̂µ1ν1µ2ν2···µn−1νn−1 P̂µnνn (71)

+δµ1ν1δµ2ν2 · · · δµn−1νn−1δµn4δνn4.

Therefore

K̂µ1µ2···µnν1ν2···νn(n)

=
i

(n!W )2
∑
P (µ)
P (ν)


B̂µ1ν1µ2ν2···µnνn

+A1(n)B̂µ1µ2ν1ν2µ3ν3µ4ν4···µnνn (72)

+· · ·+



An/2(n)B̂µ1µ2ν1ν2···µn−1µnνn−1νn

(for even n)
A(n−1)/2(n)B̂µ1µ2ν1ν2···µn−2µn−1νn−2νn−1µnνn

(for odd n)


 ,

and (69) serves as a general expression for the Feynman
propagator of spin n in coordinate representation. The
Fourier representation for ∆µ1µ2···µnν1ν2···ν

F (x) can be eas-
ily derived, using (45),

∆µ1µ2···µnν1ν2···νn

F (x)

=
1

(2π)4

∫
d4peipx∆µ1µ2···µnν1ν2···νn

F (n, p), (73a)

∆µ1µ2···µnν1ν2···νn

F (n, p)

= Pµ1µ2···µnν1ν2···νn(n, p)
−i

p2 +W 2 − iε

+Kµ1µ2···µnν1ν2···νn(n, p), (73b)

where

Kµ1µ2···µnν1ν2···νn(n, k)

=
i

(n!W )2
∑

P (µ1µ2···µn)
P (ν1ν2···νn)


Bµ1ν1µ2ν2···µnνn

+A1(n)Bµ1µ2ν1ν2µ3ν3µ4ν4···µnνn (74)

+· · ·+



An/2(n)Bµ1µ2ν1ν2···µn−1µnνn−1νn

(for even n)
A(n−1)/2(n)Bµ1µ2ν1ν2···µn−2µn−1νn−2νn−1µnνn

(for odd n)


 ,

with

Bµ1ν1 = δµ14δν14,

Bµ1ν1µ2ν2 = Bµ1ν1Pµ2ν2 + δµ1ν1δµ24δν24,

Bµ1ν1µ2ν2µ3ν3 = Bµ1ν1µ2ν2Pµ3ν3

+δµ1ν1δµ2ν2δµ34δν34, · · · , (75)
Bµ1ν1µ2ν2···µnνnµnνn = Bµ1ν1µ2ν2···µn−1νn−1Pµnνn

+δµ1ν1δµ2ν2 · · · δµn−1νn−1δµn4δνn4.

Equation (73b) gives the general momentum representa-
tion for the Feynman propagator for an arbitrary integral
spin. As an application of these formulas, we give finally
an explicit expression for the Feynman propagator for spin
4 in momentum representation:

∆µ1µ2µ3µ4ν1ν2ν3ν4
F (4, p)

= Pµ1µ2µ3µ4ν1ν2ν3ν4(4, p)
−i

p2 +W 2 − iε
+Kµ1µ2µ3µ4ν1ν2ν3ν4(4, p), (76)

where

Pµ1µ2µ3µ4ν1ν2ν3ν4(4, p)

=
(

1
4!

)2 ∑
P (µ1µ2µ3µ4)

P (ν1ν2ν3ν4)

[
Pµ1ν1Pµ2ν2Pµ3ν3 Pµ4ν4

−6
7
Pµ1µ2P ν1ν2Pµ3ν3Pµ4ν4

+
3
35
Pµ1µ2P ν1ν2Pµ3µ4P ν3ν4

]
,

and

Kµ1µ2µ3µ4ν1ν2ν3ν4(4, p)

=
i

(4!W )2
∑

P (µ1µ2µ3µ4)
P (ν1ν2ν3ν4)

[
Bµ1ν1µ2ν2µ3ν3µ4ν4

−6
7
Bµ1µ2ν1ν2µ3ν3µ4ν4 +

3
35
Bµ1µ2ν1ν2µ3µ4ν3ν4

]
.
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3.2 Half-integral spin

We now proceed to derive the Feynman propagator for a
particle with arbitrary half-integral spin. We begin with
working out the Feynman propagators for spin 3/2 and
5/2 in detail in order to demonstrate the method employed
in this section. After that, the procedure is generalized to
the case for an arbitrary half-integral spin n+ 1/2.

3.2.1 Spin 3/2

In the case of spin 3/2, armed with the wave functions

Ψν(x) =
1√
V

∑
p

3/2∑
m=−3/2

[
am(p)Uν

m(p)eipx

+b+m(p)V ν
m(p)e−ipx

]
= Ψν(x)(−) + Ψν(x)(+), (77)

the projection operator Pµν
( 3

2 , p
)

given by (29a), the field
quantization conditions{
am(p), a+

m′(p′)
}

= δp,p′δmm′ =
{
bm(p), b+m′(p′)

}
, (78)

with all others vanishing, together with the definition of
the adjoint field

Ψ̄µ(x) = (Ψµ(x))+ γ4

=
1√
V

∑
p

3/2∑
m=−3/2

[
a+

m(p)Ūµ
m(p)e−ipx + b(mp)V̄ µ

m(p)eipx
]

= Ψ̄µ(x)(+) + Ψ̄µ(x)(−), (79)

we find that the general commutation relations take the
following form:

{
Ψµ(x), Ψ̄ν(x′)

}
= iP̂µν

(
3
2

)
∆(x− x′), (80)

or equivalently

{
Ψµ(x)(−), Ψ̄ν(x′)(+)

}
= iP̂µν

(
3
2

)
∆(+)(x− x′),

(81a){
Ψµ(x)(+), Ψ̄ν(x′)(−)

}
= iP̂µν

(
3
2

)
∆(−)(x− x′),

(81b)

where

P̂µν

(
3
2

)
= − (� ∂ −W ) R̂µν

(
3
2

)
, (82a)

R̂µν

(
3
2

)
= P̂µν (82b)

− 1
3

[
γµγν − 1

W
(γµ∂ν − γν∂µ) − 1

W 2 ∂µ∂ν

]
.

The Feynman propagator for spin 3/2 is in the usual fash-
ion defined by

Sµν
F (x− x′) ≡ 〈0|TΨµ(x)Ψ̄ν(x′)|0〉 (83)

=

{
〈0|Ψµ(x)Ψ̄ν(x′)|0〉 t > t′,
− 〈0| Ψ̄ν(x′)Ψµ(x)|0〉 t < t′,

and can be rewritten as, with the aid of (81),

Sµν
F (x− x′) = iθ(t− t′)P̂µν

(
3
2

)
∆(+)(x− x′) (84)

−iθ(t′ − t)P̂µν

(
3
2

)
∆(−)(x− x′).

Performing a direct calculation that makes the θ functions
commuted past the differential operator P̂µν

( 3
2

)
, with the

help of (41), one finds that the Feynman propagator for
spin 3/2 in coordinate representation takes the form

Sµν
F (x− x′) = P̂µν

(
3
2

)
∆F(x− x′)

+K̂µν

(
3
2

)
δ(4)(x− x′), (85)

where

K̂µν

(
3
2

)
= −i

[
1

3W
γ4 (δµ4γν − γµδν4)

+
2

3W 2 (� ∂ −W ) δµ4δν4

]
. (86)

Utilizing (45), the Fourier representation for Sµν
F (x) is

found to be

Sµν
F (x) =

1
(2π)4

∫
d4peipxSµν

F

(
3
2
, p

)
, (87)

Sµν
F

(
3
2
, p

)
=

−1
� p− iW + iε

Rµν

(
3
2
, p

)

+Kµν

(
3
2
, p

)
, (88)

with

Rµν

(
3
2
, p

)
(89a)

= Pµν − 1
3

[
γµγν − i

W
(γµpν − γνpµ) − 1

W 2 pµpν

]
,

Kµν

(
3
2
, p

)
(89b)

= −i
[

1
3W

γ4 (δµ4γν − γµδν4) +
2

3W 2 (i � p−W ) δµ4δν4

]
;

Sµν
F

( 3
2 , p

)
is the Feynman propagator for spin 3/2 in mo-

mentum representation.
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3.2.2 Spin 5/2

In a similar manner as in the case of spin 3/2, by using
the wave functions for spin 5/2

Ψν1ν2(x) =
∑

p

5/2∑
m=−5/2

1√
V

[
am(p)Uν1ν2

m (p)eipx

+b+m(p)V ν1ν2
m (p)e−ipx

]
= Ψν1ν2(x)(−) + Ψν1ν2(x)(+), (90)

the projection operator Pµ1µ2ν1ν2
( 5

2 , p
)

given by (29b),
the field quantization conditions (78), and the definition
of the adjoint field

Ψ̄ν1ν2(x) = (Ψν1ν2(x))+ γ4

=
∑

p

5/2∑
m=−5/2

1√
V

[
a+

m(p)Ūν1ν2
m (p)e−ipx

+bm(p)V̄ ν1ν2
m (p)eipx

]
= Ψ̄ν1ν2(x)(+) + Ψ̄ν1ν2(x)(−), (91)

we find that the general commutation rules are

{
Ψµ1µ2(x), Ψ̄ν1ν2(x′)

}
= iP̂µ1µ2ν1ν2

(
5
2

)
∆(x− x′), (92)

or equivalently{
Ψµ1µ2(x)(−), Ψ̄ν1ν2(x′)(+)

}
= iP̂µ1µ2ν1ν2

(
5
2

)
∆(+)(x− x′), (93a){

Ψµ1µ2(x)(+), Ψ̄ν1ν2(x′)(−)
}

= iP̂µ1µ2ν1ν2

(
5
2

)
∆(−)(x− x′), (93b)

where

P̂µ1µ2ν1ν2

(
5
2

)
= −(� ∂ −W )R̂µ1µ2ν1ν2

(
5
2

)
, (94a)

R̂µ1µ2ν1ν2

(
5
2

)

=
1
2

[
P̂µ1ν1 P̂µ2ν2 + P̂µ1ν2 P̂µ2ν1

]
− 1

5

[
P̂µ1µ2 P̂ ν1ν2

]
− 1

10

∑
P (µ1µ2)
P (ν1ν2)

[γµ1γν1

− 1
W

(γµ1∂ν1 − γν1∂µ1) − 1
W 2 ∂µ1∂ν1

]
P̂µ2ν2 . (94b)

The Feynman propagator for spin 5/2 is defined by

Sµ1µ2ν1ν2
F (x− x′) ≡ 〈0|TΨµ1µ2(x)Ψ̄ν1ν2(x′)|0〉 (95)

=




〈0|Ψµ1µ2(x)Ψ̄ν1ν2(x′)|0
t > t′,

−〈0|Ψ̄ν1ν2(x′)Ψµ1µ2(x)|0〉
t < t′,

and can be re-expressed, with the aid of (93), as

Sµ1µ2ν1ν2
F (x− x′)

= iθ(t− t′)P̂µ1µ2ν1ν2

(
5
2

)
∆(+)(x− x′)

−iθ(t′ − t)P̂µ1µ2ν1ν2

(
5
2

)
∆(−)(x− x′). (96)

Performing a direct calculation that makes the θ functions
commuted past the differential operator P̂µ1µ2ν1ν2

( 5
2

)
, we

get

Sµ1µ2ν1ν2
F (x− x′)

= P̂µ1µ2ν1ν2

(
5
2

)
∆F(x− x′)

+K̂µ1µ2ν1ν2

(
5
2

)
δ(4)(x− x′), (97)

where

K̂µ1µ2ν1ν2

(
5
2

)

= − i(� ∂ −W )
W 2

[
1
2

(δµ1ν1δµ24δν24

+δµ14δν14P̂
µ2ν2 + δµ1ν2δµ24δν14 + δµ14δν24P̂

µ2ν1

)
− 1

5

(
δµ1µ2δν14δν24 + δµ14δµ24P̂

ν1ν2

)]

− 1
10

∑
P (µ1µ2)
P (ν1ν2)

{[
i
W
γ4 (δµ14γν1 − γµ1δν14)

− i
W 2 (� ∂ −W ) δµ14δν14

]
P̂µ2ν2

+(� ∂ −W )γµ1γν1

(
δµ24δν24

W 2

)}
. (98)

This is the Feynman propagator for spin 5/2 in co-
ordinate representation. The Fourier representation for
Sµ1µ2ν1ν2

F (x) can be easily deduced, using (45),

Sµ1µ2ν1ν2
F (x) =

1
(2π)4

∫
d4peipxSµ1µ2ν1ν2

F

(
5
2
, p

)
, (99)

Sµ1µ2ν1ν2
F

(
5
2
, p

)
(100)

=
−1

� p− iW + iε
Rµ1µ2ν1ν2

(
5
2
, p

)
+Kµ1µ2ν1ν2

(
5
2
, p

)
,

with

Rµ1µ2ν1ν2

(
5
2
, p

)
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=
1
2

[Pµ1ν1Pµ2ν2 + Pµ1ν2Pµ2ν1 ] − 1
5

[Pµ1µ2P ν1ν2 ]

− 1
10

∑
P (µ1µ2)
P (ν1ν2)

[
γµ1γν1 − i

W
(γµ1pν1 − γν1pµ1)

− 1
W 2 pµ1pν1

]
Pµ2ν2 , (101a)

Kµ1µ2ν1ν2

(
5
2
, p

)

= − i(i � p−W )
W 2

[
1
2

(δµ1ν1δµ24δν24 + δµ14δν14P
µ2ν2

+δµ1ν2δµ24δν14 + δµ14δν24P
µ2ν1)

−1
5

(δµ1µ2δν14δν24 + δµ14δµ24P
ν1ν2)]

− 1
10

∑
P (µ1µ2)
P (ν1ν2)

{[
i
W
γ4 (δµ14γν1 − γµ1δν14)

− i
W 2 (i � p−W ) δµ14δν14

]
Pµ2ν2

+(i � p−W )γµ1γν1

(
δµ24δν24

W 2

)}
. (101b)

Similar to the previous case, Sµ1µ2ν1ν2
F

( 5
2 , p

)
in the above

is the Feynman propagator for spin 5/2 in momentum
representation.

3.2.3 Spin n+ 1/2

The above procedure is now extended to the general case
of arbitrary half-integral spin n+1/2. We begin by working
out the general commutation rules. From (10), (12), (15),
(23) and (78), we get, by following the same steps as in
the cases of spin 3/2 and 5/2:{

Ψµ1µ2···µn(x), Ψ̄ν1ν2···νn(x′)
}

= iP̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)
∆(x− x′), (102)

or equivalently{
Ψµ1µ2···µn(x)(−), Ψ̄ν1ν2···νn(x′)(+)

}
= iP̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)
∆(+)(x− x′), (103a){

Ψµ1µ2···µn(x)(+), Ψ̄ν1ν2···νn(x′)(−)
}

= iP̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)
∆(−)(x− x′), (103b)

with

P̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)

= −(� ∂ −W )R̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)
, (104)

where R̂µ1···µnν1···νn
(
n+ 1

2

)
is a differential operator con-

structed fromQµ1···µnν1···νn
(
n+ 1

2 , p
)

in the following way
(refer to (28)):

3Pµ1ν1Pµ2ν2 · · ·Pµnνn ⇒ 3P̂µ1ν1 P̂µ2ν2 · · · P̂µnνn ,(105)[
γµ1γν1 ∓ i

W
(γµ1pν1 − γν1pµ1) +

1
W 2 pµ1pν1

]
×Pµ2ν2 · · ·Pµnνn

⇒
[
γµ1γν1 − 1

W
(γµ1∂ν1 − γν1∂µ1) − 1

W 2 ∂µ1∂ν1

]
×P̂µ2ν2 · · · P̂µnνn . (106)

The Feynman propagator for spin n+ 1/2 is defined by

Sµ1µ2···µnν1ν2···νn

F (x− x′) (107)
≡ 〈0|TΨµ1µ2···µn(x)Ψ̄ν1ν2···νn(x′)|0〉

=




〈0|Ψµ1µ2···µn(x)Ψ̄ν1ν2···νn(x′)|0〉
t > t′,

− 〈0| Ψ̄ν1ν2···νn(x′)Ψµ1µ2···µn(x)|0〉
t < t′,

and can be rewritten as, using (103),

Sµ1µ2···µnν1ν2···νn

F (x− x′) (108)

= iθ(t− t′)P̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)
∆(+)(x− x′)

−iθ(t′ − t)P̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)
∆(−)(x− x′).

Performing a step-by-step calculation that makes the
θ functions commute past the differential operator
P̂µ1µ2···µnν1ν2···νn

(
n+ 1

2

)
, we find that the general expres-

sion for the Feynman propagator for spin n+1/2 in coor-
dinate representation is

Sµ1µ2···µnν1ν2···νn

F (x− x′)

= P̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)
∆F(x− x′) (109)

+K̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)
δ(4)(x− x′),

where K̂µ1···µnν1···νn
(
n+ 1

2

)
is resulting from the commu-

tation between the θ functions and P̂µ1···µnν1···νn
(
n+ 1

2

)
,

and consists of two kinds of terms [refer to (105)
and (106)]; one originates from terms such as
(� ∂ −W )3P̂µ1ν1 P̂µ2ν2 · · · P̂µnνn , and can be expressed as
3i( �∂−W )

W 2 [B̂µ1ν1µ2ν2···µnνn ], because of

iθ(t) (� ∂ −W ) P̂µ1ν1 P̂µ2ν2 · · · P̂µnνn∆(+)(x)

−iθ(−t) (� ∂ −W ) P̂µ1ν1

−iθ(−t) (� ∂ −W ) P̂µ1ν1 P̂µ2ν2 · · · P̂µnνn∆(−)(x)

= (� ∂ −W ) P̂µ1ν1 P̂µ2ν2 · · · P̂µnνn∆F(x)

+
i (� ∂ −W )

W 2

[
B̂µ1ν1µ2ν2···µnνn

]
δ(4)(x), (110)
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where B̂µ1ν1µ2ν2···µnνn is the same operator as in the case
of integral spin (see (71)), the other originates from terms
such as

(� ∂ −W )

×
[
γµ1γν1 − 1

W
(γµ1∂ν1 − γν1∂µ1) − 1

W 2 ∂µ1∂ν1

]
×P̂µ2ν2 · · · P̂µnνn ,

and can be expressed by Ĉµ1ν1µ2ν2···µnνn , because of

iθ(t) (� ∂−W)
[
γµ1γν1−

1
W

(γµ1∂ν1 − γν1∂µ1) − 1
W 2 ∂µ1∂ν1

]
×P̂µ2ν2 · · · P̂µnνn∆(+)(x) − iθ(−t) (� ∂ −W )

×
[
γµ1γν1 − 1

W
(γµ1∂ν1 − γν1∂µ1) − 1

W 2 ∂µ1∂ν1

]
×P̂µ2ν2 · · · P̂µnνn∆(−)(x)

= (� ∂−W)
[
γµ1γν1−

1
W

(γµ1∂ν1−γν1∂µ1) − 1
W 2 ∂µ1∂ν1

]
×P̂µ2ν2 · · · P̂µnνn∆F(x)

+Ĉµ1ν1µ2ν2···µnνnδ(4)(x), (111a)

with

Ĉµ1ν1

= i
[

1
W
γ4 (δµ14γν1−γµ1δν14) − 1

W 2 (� ∂−W ) δµ14δν14

]
,

Ĉµ1ν1µ2ν2

= Ĉµ1ν1 P̂µ2ν2 + i(� ∂ −W )γµ1γν1

(
δµ24δν24

W 2

)
,

Ĉµ1ν1µ2ν2µ3ν3

= Ĉµ1ν1µ2ν2 P̂µ3ν3

+i(� ∂ −W )γµ1γν1δµ2ν2

(
δµ34δν34

W 2

)
, · · · ,

Ĉµ1ν1µ2ν2···µnνn

= Ĉµ1ν1µ2ν2···µn−1νn−1 P̂µnνn (111b)

+i(� ∂−W )γµ1γν1δµ2ν2δµ3ν3 · · ·δµn−1νn−1

(
δµn4δνn4

W 2

)
.

The Fourier representation for Sµ1µ2···µnν1ν2···νn

F (x) can be
easily derived, using (45),

Sµ1µ2···µnν1ν2···νn

F (x) (112a)

=
1

(2π)4

∫
d4peipxSµ1µ2···µnν1ν2···νn

F

(
n+

1
2
, p

)
,

Sµ1µ2···µnν1ν2···νn

F

(
n+

1
2
, p

)

=
−1

� p− iW + iε
Rµ1µ2···µnν1ν2···νn

(
n+

1
2
, p

)

+Kµ1µ2···µnν1ν2···νn

(
n+

1
2
, p

)
, (112b)

with

Rµ1µ2···µnν1ν2···νn

(
n+

1
2
, p

)

= R̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)∣∣∣∣
∂µ=ipµ

, (113a)

Kµ1µ2···µnν1ν2···νn

(
n+

1
2
, p

)

= K̂µ1µ2···µnν1ν2···νn

(
n+

1
2

)∣∣∣∣
∂µ=ipµ

. (113b)

Equation (112b) gives the general momentum representa-
tion for the Feynman propagator for an arbitrary half-
integral spin. As an illustration of these formulas, we pro-
vide finally the explicit expression for the propagator for
spin 7/2:

Sµ1µ2µ3ν1ν2ν3
F

(
7
2
, p

)

=
−1

� p− iW + iε
Rµ1µ2µ3ν1ν2ν3

(
7
2
, p

)

+Kµ1µ2µ3ν1ν2ν3

(
7
2
, p

)
, (114)

where

Rµ1µ2µ3ν1ν2ν3

(
7
2
, p

)

=
1
6

∑
P (ν1ν2ν3)

Pµ1ν1Pµ2ν2Pµ3ν3

− 1
280

∑
P (µ1µ2µ3)
P (ν1ν2ν3)

Pµ1µ2P ν1ν2Pµ3ν3

− 1
84

∑
P (µ1µ2µ3)
P (ν1ν2ν3)

[(
γµ1γν1 − i

W
(γµ1pν1 − γν1pµ1)

+
1
W 2 pµ1pν1

)
Pµ2ν2Pµ3ν3

+
2
9

(
γµ1γµ2 − i

W
(γµ1pµ2 − γµ2pµ1)

+
1
W 2 pµ1pµ2

)
P ν1ν2Pµ3ν3

+
1
5

(
γν1γµ1 − i

W
(γν1pµ1 − γµ1pν1)

+
1
W 2 pµ1pν1

)
Pµ2µ3P ν2ν3

]}
, (115a)

Kµ1µ2µ3ν1ν2ν3

(
7
2
, p

)

=
1
W 2 (� p+ iW )

×

1

6

∑
P (ν1ν2ν3)

Bµ1ν1µ2ν2µ3ν3
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− 1
280

∑
P (µ1µ2µ3)
P (ν1ν2ν3)

Bµ1µ2ν1ν2µ3ν3




+
1
84

∑
P (µ1µ2µ3)
P (ν1ν2ν3)

[Cµ1ν1µ2ν2µ3ν3

+
2
9
Cµ1µ2ν1ν2µ3ν3 +

1
5
Cν1µ1µ2µ3ν2ν3

]
, (115b)

with

Cµ1ν1µ2ν2µ3ν3 (116a)

= Cµ1ν1µ2ν2Pµ3ν3 +
i(i � p−W )

W 2 [γµ1γν1δµ2ν2δµ34δν34] ,

Cµ1ν1µ2ν2 (116b)

= Cµ1ν1Pµ2ν2 +
i(i � p−W )

W 2 [γµ1γν1δµ24δν24] ,

Cµ1ν1 (116c)

= i
[

1
W
γ4 (δµ14γν1 − γµ1δν14) − (i � p−W )

W 2 δµ14δν14

]
.

In summary, the projection operator for an arbitrary
integral and half-integral spin constructed by Behrends
and Fronsdal has been confirmed and simplified by direct
derivation based on the explicit expression of the wave
functions, the commutation rules and a general expres-
sion for the Feynman propagator for an arbitrary integral
and half-integral spin are deduced, and especially explicit
expressions for the propagators for spin 3/2, 2, 5/2, 3, 7/2
and 4 are provided.
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